Pre-treatment of sugarcane bagasse with aqueous ammonia–glycerol mixtures to enhance enzymatic saccharification and recovery of ammonia

2019 ◽  
Vol 289 ◽  
pp. 121628 ◽  
Author(s):  
Tingting Shi ◽  
Jianghai Lin ◽  
Jiasheng Li ◽  
Yan Zhang ◽  
Cuifeng Jiang ◽  
...  
2021 ◽  
Author(s):  
Minxia Zeng ◽  
Baoying Tang ◽  
Peijin Li ◽  
Zhiquan Liang ◽  
Xiaozhen Li ◽  
...  

Abstract Background: Bioethanol is considered as a promising alternative fuel. Lignocellulosic biomass can be used for the production of bioethanol, but its recalcitrant structure makes it difficult to be utilized. Thus, proper pretreatment is a crucial step to break this structure and enhance enzymatic saccharification. Aqueous ammonia with sodium sulfite pretreatment (AAWSSP) was first applied to enhance the enzymatic saccharification and bioethanol production of sugarcane bagasse (SCB) in this research.Results: Response surface methodology was applied to optimize the conditions of pretreatment. Under optimal parameters, 16.92 g/L of total sugar concentration (P1 SCB: 202.08℃, 11.06% aqueous ammonia, 13.37% sodium sulfite, 1.22 h) and 0.51 g/g of total sugar yield (P2 SCB: 199.47℃, 10.17% aqueous ammonia, 13.11% sodium sulfite, 1.17 h) were achieved, respectively. The results of ethanol fermentation showed that separate hydrolysis and fermentation performed better than that of simultaneous saccharification and fermentation, and the maximum ethanol yields of 143.30 g/kg for P1 SCB and 145.33 g/kg for P2 SCB, were obtained, respectively. Conclusions: This research indicated that aqueous ammonia and sodium sulfite in pretreatment solution might have a synergistic effect on delignification and enzymatic saccharification. AAWSSP might be a prospective method for enhancing enzymatic saccharification and bioethanol production of SCB, which provided new guidance for the bio-refinery of lignocellulose.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Vihang S. Thite ◽  
Anuradha S. Nerurkar

Abstract After chemical pretreatment, improved amenability of agrowaste biomass for enzymatic saccharification needs an understanding of the effect exerted by pretreatments on biomass for enzymatic deconstruction. In present studies, NaOH, NH4OH and H2SO4 pretreatments effectively changed visible morphology imparting distinct fibrous appearance to sugarcane bagasse (SCB). Filtrate analysis after NaOH, NH4OH and H2SO4 pretreatments yielded release of soluble reducing sugars (SRS) in range of ~0.17–0.44%, ~0.38–0.75% and ~2.9–8.4% respectively. Gravimetric analysis of pretreated SCB (PSCB) biomass also revealed dry weight loss in range of ~25.8–44.8%, ~11.1–16.0% and ~28.3–38.0% by the three pretreatments in the same order. Release of soluble components other than SRS, majorly reported to be soluble lignins, were observed highest for NaOH followed by H2SO4 and NH4OH pretreatments. Decrease or absence of peaks attributed to lignin and loosened fibrous appearance of biomass during FTIR and SEM studies respectively further corroborated with our observations of lignin removal. Application of commercial cellulase increased raw SCB saccharification from 1.93% to 38.84%, 25.56% and 9.61% after NaOH, H2SO4 and NH4OH pretreatments. Structural changes brought by cell wall degrading enzymes were first time shown visually confirming the cell wall disintegration under brightfield, darkfield and fluorescence microscopy. The microscopic evidence and saccharification results proved that the chemical treatment valorized the SCB by making it amenable for enzymatic saccharification.


2021 ◽  
Vol 291 ◽  
pp. 125972
Author(s):  
Shuai Zhao ◽  
Gui-Ling Zhang ◽  
Chen Chen ◽  
Qi Yang ◽  
Xue-Mei Luo ◽  
...  

Author(s):  
Sunil Kodishetty Ramaiah ◽  
Girisha Shringala Thimappa ◽  
Lokesh Kyathasandra Nataraj ◽  
Proteek Dasgupta

2012 ◽  
Vol 37 (1) ◽  
pp. 109-116 ◽  
Author(s):  
Parameswaran Binod ◽  
Karri Satyanagalakshmi ◽  
Raveendran Sindhu ◽  
Kanakambaran Usha Janu ◽  
Rajeev K. Sukumaran ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document