Ammonia stress reduces antibiotic efflux but enriches horizontal gene transfer of antibiotic resistance genes in anaerobic digestion

2020 ◽  
Vol 295 ◽  
pp. 122191 ◽  
Author(s):  
Junya Zhang ◽  
Chulu Buhe ◽  
Dawei Yu ◽  
Hui Zhong ◽  
Yuansong Wei
mBio ◽  
2015 ◽  
Vol 6 (5) ◽  
Author(s):  
María Getino ◽  
David J. Sanabria-Ríos ◽  
Raúl Fernández-López ◽  
Javier Campos-Gómez ◽  
José M. Sánchez-López ◽  
...  

ABSTRACT Bacterial conjugation constitutes a major horizontal gene transfer mechanism for the dissemination of antibiotic resistance genes among human pathogens. Antibiotic resistance spread could be halted or diminished by molecules that interfere with the conjugation process. In this work, synthetic 2-alkynoic fatty acids were identified as a novel class of conjugation inhibitors. Their chemical properties were investigated by using the prototype 2-hexadecynoic acid and its derivatives. Essential features of effective inhibitors were the carboxylic group, an optimal long aliphatic chain of 16 carbon atoms, and one unsaturation. Chemical modification of these groups led to inactive or less-active derivatives. Conjugation inhibitors were found to act on the donor cell, affecting a wide number of pathogenic bacterial hosts, including Escherichia, Salmonella, Pseudomonas, and Acinetobacter spp. Conjugation inhibitors were active in inhibiting transfer of IncF, IncW, and IncH plasmids, moderately active against IncI, IncL/M, and IncX plasmids, and inactive against IncP and IncN plasmids. Importantly, the use of 2-hexadecynoic acid avoided the spread of a derepressed IncF plasmid into a recipient population, demonstrating the feasibility of abolishing the dissemination of antimicrobial resistances by blocking bacterial conjugation. IMPORTANCE Diseases caused by multidrug-resistant bacteria are taking an important toll with respect to human morbidity and mortality. The most relevant antibiotic resistance genes come to human pathogens carried by plasmids, mainly using conjugation as a transmission mechanism. Here, we identified and characterized a series of compounds that were active against several plasmid groups of clinical relevance, in a wide variety of bacterial hosts. These inhibitors might be used for fighting antibiotic-resistance dissemination by inhibiting conjugation. Potential inhibitors could be used in specific settings (e.g., farm, fish factory, or even clinical settings) to investigate their effect in the eradication of undesired resistances.


2021 ◽  
Author(s):  
Heather A. Kittredge ◽  
Kevin M. Dougherty ◽  
Sarah E. Evans

AbstractAntibiotic resistance genes (ARGs) are ubiquitous in the environment and pose a serious risk to human and veterinary health. While many studies focus on the spread of live antibiotic resistant bacteria throughout the environment, it is unclear whether extracellular ARGs from dead cells can transfer to live bacteria to facilitate the evolution of antibiotic resistance in nature. Here, we inoculate antibiotic-free soil with extracellular ARGs (eARGs) from dead Pseudeononas stutzeri cells and track the evolution of antibiotic resistance via natural transformation – a mechanism of horizontal gene transfer involving the genomic integration of eARGs. We find that transformation facilitates the rapid evolution of antibiotic resistance even when eARGs occur at low concentrations (0.25 μg g-1 soil). However, when eARGs are abundant, transformation increases substantially. The evolution of antibiotic resistance was high under soil moistures typical in terrestrial systems (5%-30% gravimetric water content) and was only inhibited at very high soil moistures (>30%). While eARGs transformed into live cells at a low frequency, exposure to a low dose of antibiotic allowed a small number of transformants to reach high abundances in laboratory populations, suggesting even rare transformation events pose a risk to human health. Overall, this work demonstrates that dead bacteria and their eARGs are an overlooked path to antibiotic resistance, and that disinfection alone is insufficient to stop the spread of antibiotic resistance. More generally, the spread of eARGs in antibiotic-free soil suggests that transformation allows genetic variants to establish at low frequencies in the absence of antibiotic selection.ImportanceOver the last decade, antibiotics in the environment have gained increasing attention because they can select for drug-resistant phenotypes that would have otherwise gone extinct. To counter this effect, bacterial populations exposed to antibiotics often undergo disinfection. However, the release of extracellular antibiotic resistance genes (eARGs) into the environment following disinfection can promote the transfer of eARGs through natural transformation. This phenomenon is well-documented in wastewater and drinking water, but yet to be investigated in soil. Our results directly demonstrate that eARGs from dead bacteria are an important, but often overlooked source of antibiotic resistance in soil. We conclude that disinfection alone is insufficient to prevent the spread of ARGs. Special caution should be taken in releasing antibiotics into the environment, even if there are no live antibiotic resistant bacteria in the community, as transformation allows DNA to maintain its biological activity past microbial death.


2021 ◽  
Author(s):  
Elizabeth Pursey ◽  
Tatiana Dimitriu ◽  
Fernanda L. Paganelli ◽  
Edze R. Westra ◽  
Stineke van Houte

AbstractThe acquisition of antibiotic resistance genes via horizontal gene transfer is a key driver of the rise in multidrug resistance amongst bacterial pathogens. Bacterial defence systems per definition restrict the influx of foreign genetic material, and may therefore limit the acquisition of antibiotic resistance. CRISPR-Cas adaptive immune systems are one of the most prevalent defences in bacteria, found in roughly half of bacterial genomes, but it has remained unclear if and how much they contribute to restricting the spread of antibiotic resistance. We analysed ~40,000 whole genomes comprising the full RefSeq dataset for 11 species of clinically important genera of human pathogens including Enterococcus, Staphylococcus, Acinetobacter and Pseudomonas. We modelled the association between CRISPR-Cas and indicators of horizontal gene transfer, and found that pathogens with a CRISPR-Cas system were less likely to carry antibiotic resistance genes than those lacking this defence system. Analysis of the mobile genetic elements targeted by CRISPR-Cas supports a model where this host defence system blocks important vectors of antibiotic resistance. These results suggest a potential “immunocompromised” state for multidrug-resistant strains that may be exploited in tailored interventions that rely on mobile genetic elements, such as phage or phagemids, to treat infections caused by bacterial pathogens.


Sign in / Sign up

Export Citation Format

Share Document