Long-term alkaline conditions inhibit the relative abundances of tetracycline resistance genes in saline 4-chlorophenol wastewater treatment

2020 ◽  
Vol 301 ◽  
pp. 122792
Author(s):  
Yahe Li ◽  
Jianguo Zhao ◽  
Yu Li ◽  
Baodan Jin ◽  
Ke Zhang ◽  
...  
GigaScience ◽  
2020 ◽  
Vol 9 (5) ◽  
Author(s):  
Suk-Kyung Lim ◽  
Dongjun Kim ◽  
Dong-Chan Moon ◽  
Youna Cho ◽  
Mina Rho

Abstract Background Antibiotics administered to farm animals have led to increasing prevalence of resistance genes in different microbiomes and environments. While antibiotic treatments help cure infectious diseases in farm animals, the possibility of spreading antibiotic resistance genes into the environment and human microbiomes raises significant concerns. Through long-term evolution, antibiotic resistance genes have mutated, thereby complicating the resistance problems. Results In this study, we performed deep sequencing of the gut microbiomes of 36 swine and 41 cattle in Korean farms, and metagenomic analysis to understand the diversity and prevalence of antibiotic resistance genes. We found that aminoglycoside, β-lactam, lincosamide, streptogramin, and tetracycline were the prevalent resistance determinants in both swine and cattle. Tetracycline resistance was abundant and prevalent in cattle and swine. Specifically, tetQ, tetW, tetO, tet32, and tet44 were the 5 most abundant and prevalent tetracycline resistance genes. Their prevalence was almost 100% in swine and cattle. While tetQ was similarly abundant in both swine and cattle, tetW was more abundant in swine than in cattle. Aminoglycoside was the second highest abundant resistance determinant in swine, but not in cattle. In particular, ANT(6) and APH(3′′) were the dominant resistance gene families in swine. β-lactam was also an abundant resistance determinant in both swine and cattle. Cfx was the major contributing gene family conferring resistance against β-lactams. Conclusions Antibiotic resistome was more pervasive in swine than in cattle. Specifically, prevalent antibiotic resistance genes (prevalence >50%) were found more in swine than in cattle. Genomic investigation of specific resistance genes from the gut microbiomes of swine and cattle in this study should provide opportunities to better understand the exchange of antibiotic resistance genes in farm animals.


2006 ◽  
Vol 72 (12) ◽  
pp. 7813-7820 ◽  
Author(s):  
Archana Jindal ◽  
Svetlana Kocherginskaya ◽  
Asma Mehboob ◽  
Matthew Robert ◽  
Roderick I. Mackie ◽  
...  

ABSTRACT Chlortetracycline and the macrolide tylosin were identified as commonly used antimicrobials for growth promotion and prophylaxis in swine production. Resistance to these antimicrobials was measured throughout the waste treatment processes at five swine farms by culture-based and molecular methods. Conventional farm samples had the highest levels of resistance with both culture-based and molecular methods and had similar levels of resistance despite differences in antimicrobial usage. The levels of resistance in organic farm samples, where no antimicrobials were used, were very low by a culture-based method targeting fecal streptococci. However, when the same samples were analyzed with a molecular method detecting methylation of a specific nucleotide in the 23S rRNA that results in resistance to macrolides, lincosamides, and streptogramin B (MLSB), an unexpectedly high level of resistant rRNA (approximately 50%) was observed, suggesting that the fecal streptococci were not an appropriate target group to evaluate resistance in the overall microbial community and that background levels of MLSB resistance may be substantial. All of the feed samples tested, including those from the organic farm, contained tetracycline resistance genes. Generally, the same tetracycline resistance genes and frequency of detection were found in the manure and lagoon samples for each commercial farm. The levels of tetracycline and MLSB resistance remained high throughout the waste treatment systems, suggesting that the potential impact of land application of treated wastes and waste treatment by-products on environmental levels of resistance should be investigated further.


2019 ◽  
Vol 48 (1) ◽  
pp. 171-178 ◽  
Author(s):  
Melanie Couch ◽  
Getahun E. Agga ◽  
John Kasumba ◽  
Rohan R. Parekh ◽  
John H. Loughrin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document