High effective adsorption of Pb(II) from solution by biochar derived from torrefaction of ammonium persulphate pretreated bamboo

2021 ◽  
Vol 323 ◽  
pp. 124616
Author(s):  
Yan Shen ◽  
Jian-Zhong Guo ◽  
Li-Qun Bai ◽  
Xiao-Qin Chen ◽  
Bing Li
Keyword(s):  
1902 ◽  
Vol 23 ◽  
pp. 163-168 ◽  
Author(s):  
Hugh Marshall

Although the action of potassium persulphate on silver nitrate solution was one of the first persulphate reactions observed (vol. xviii. p. 64), I had not until lately paid any special attention to the behaviour of the ammonium salt in this respect. It appears, however, that in the latter case there are additional actions of great interest, not possible with the potassium salt. A general description of these will be given now, but there are still some points deserving of further investigation.


2021 ◽  
Vol 1 (3) ◽  
Author(s):  
Ramana Murthy RVV

Previously we prepared fracturing linear gel with fossil diesel, bio-diesel and also used suspending, anti-settling agents and emulsifiers. But through this research, a novel and efficient method for the preparation of linear gel directly mixed with water, guar gum and sodium acetate together instantly. In this instead of diesel, we used water and no need to mix anti-settling agents, suspending agents, emulsifiers that resulted in 30 viscosity linear gel. Ammonium persulphate or Ammonium peroxidisulphate and enzyme-G are used for oxidation purposes to break the gel gradually at a particular static temperature. The degradation pattern observed from the breaker test showed that a reduction in gel viscosity depends on time, temperature & breaker concentration. Observations from experiments revealed that a small concentration of breakers provides rapid break compared to oxidative breakers. This article, designing of fracturing fluids describes how to use the fluid's viscosity generated by the gelling agents like guar gum for CBM operations.


2018 ◽  
Vol 77 (12) ◽  
pp. 2917-2928 ◽  
Author(s):  
Mihir Kumar Sahoo ◽  
John E. Kumar ◽  
Bhauk Sinha ◽  
Morten Marbaniang ◽  
Rajeshwar N. Sharan

Abstract The present study reports a process for simultaneous mineralization and detoxification of Mordant Black 17 with high electrical energy efficiency. Hydrogen peroxide and ammonium persulphate (APS) were used for the generation of hydroxyl and sulphate radicals using UV light (λ = 254 nm) and Fe2+ and Ag+ ions as catalysts. The detoxification and energy efficiency of various processes were measured by monitoring growth inhibition of Escherichia coli and Electrical Energy per Order (EE/O) applicable for low concentration contaminants respectively. Systems catalyzed by Fe2+ are more energy efficient and possess higher mineralization and detoxification efficiency than that of Ag+. The concentration of the catalysts and oxidants were found to strongly influence the EE/O of the systems. The most cost efficient processes for simultaneous mineralization and detoxification are Fe2+/APS/UV at pH 3.00 and Fe2+/H2O2/UV at pH 3.00 and 5.78. The upper limit concentration of Fe2+ is fixed at 0.01 mM for complete detoxification. The treated solutions start detoxifying at this concentration, above which they remain more toxic than the original dye solution irrespective of the extent of mineralization. On the contrary, no such limit could be established for Ag+ systems for complete detoxification even after 91% mineralization.


2021 ◽  
Vol 1167 ◽  
pp. 13-22
Author(s):  
C.C. Soumya ◽  
K.E. George ◽  
Sunil K. Narayanankutty

Organic acid doped polyaniline (PANI), hybrid with silica gel (SiG) and composites with metal primer have been prepared by chemical oxidative polymerization of double-distilled aniline in an acidic medium at 0-5 °C in an ice bath using ammonium persulphate as oxidant and p-toluene sulphonic acid (p-TSA) as the dopant. The anticorrosive property of PANI coatings containing alkyd primer, zinc chromate and silica gel was investigated. The coatings were characterized by FTIR spectroscopy, scanning electron microscopy and electrochemical impedance spectroscopy. The corrosion studies were carried out in a 3.5 wt% NaCl solution. On introduction of SiG, PANI, and PANI-SiG hybrid, the corrosion current decreased from 0.03626 μA to 0.007856 μA, 0.02042 μA, and 0.011 μA, respectively. The penetration rates calculated in mm/yr. for the composites: SiG/Primer, PANI/Primer and PANI-SiG/Primer were 0.430× 10-4, 1.110× 10-4, and 0.599 × 10-4, respectively and that of neat primer was 1.977 × 10-4. The corrosion protection efficiency of the primer was improved up to 7% on introduction of the PANI-based fillers. The 5 wt% of 1:1 PANI-SiG/primer composite, which contains 2.5wt% of PANI, showed better results than that of 5wt% PANI in Primer and these results are very close to that of 5wt% SiG/Primer composites.


2020 ◽  
Vol 299 ◽  
pp. 1104-1108
Author(s):  
Ashimkhan T. Kanayev ◽  
Khussain Valiyev ◽  
Aleksandr Bulaev

The effect of different oxidants on extraction of uranium from low grade ore was studied. Leaching was performed using sulfuric acid solutions at a concentration of 10 to 30%. Ferric sulfate Fe2(SO4)3, ammonium persulphate (NH4)2S2O8, and potassium permanganate KMnO4 at different concentrations were used as oxidants in different variants of the experiment. In addition, solutions collected at Vostok deposit containing 6.86 g/L Fe3+ and 106 cells/mL of the bacteria Acidithiobacillusferrooxidans were used for leaching. The rate of uranium extraction with sulfuric acid solutions without oxidants was low and did not exceed 19.4%. Addition of oxidants made it possible to increase rate of uranium extraction. In the presence of ferric sulfate, ammonium persulphate, and potassium permanganate rates of uranium extraction were up to 68, 95.2, and 69.6%, respectively. The rate of uranium leaching in the experiments with the AMD sample was high and reached about 95%. Therefore, it can be concluded that using not only oxidizing agents, but AMD, which are formed during the natural oxidation of sulfide minerals contained in the ore of the deposit, can significantly increase the rate of uranium recovery.


Sign in / Sign up

Export Citation Format

Share Document