A super highly sensitive glucose biosensor based on Au nanoparticles–AgCl@polyaniline hybrid material

2008 ◽  
Vol 23 (7) ◽  
pp. 925-931 ◽  
Author(s):  
Wei Yan ◽  
Xiaomiao Feng ◽  
Xiaojun Chen ◽  
Wenhua Hou ◽  
Jun-Jie Zhu
2010 ◽  
Vol 92 ◽  
pp. 23-28 ◽  
Author(s):  
Xiang Zhong Ren ◽  
Li Zhang ◽  
Ying Kai Jiang ◽  
Pei Xin Zhang ◽  
Jian Hong Liu ◽  
...  

AgCl@polypyrrole(PPy) nanocomposites were synthesized through in situ chemical oxidation polymerization by using poly(vinylpyrrolidane) (PVP) as dispersant, and some Au colloid were prepared by using KBH4 as reductant and sodium citrate as stabilizer, then the Au nanoparticles-AgCl@PPy hybrid material was formed by physical chemical reaction. Fourier transform infrared spectrometer (FTIR) and electron dispersive spectrometer (EDS) data suggested that the hybrid material were composed of Au, AgCl and PPy. An amperometric glucose biosensor was fabricated by adsorbing glucose oxidase (GOx) to an Au nanoparticles-AgCl@PPy hybrid material modified platinum electrode. The biosensor exhibited a super highly sensitive response to H2O2.


2020 ◽  
Vol 16 (6) ◽  
pp. 744-752
Author(s):  
Kuan Luo ◽  
Xinyu Jiang

Background: Diabetes Mellitus (DM) is a major public metabolic disease that influences 366 million people in the world in 2011, and this number is predicted to rise to 552 million in 2030. DM is clinically diagnosed by a fasting blood glucose that is equal or greater than 7 mM. Therefore, the development of effective glucose biosensor has attracted extensive attention worldwide. Fluorescence- based strategies have sparked tremendous interest due to their rapid response, facile operation, and excellent sensitivity. Many fluorescent compounds have been employed for precise analysis of glucose, including quantum dots, noble metal nanoclusters, up-converting nanoparticles, organic dyes, and composite fluorescent microspheres. Silicon dot as promising quantum dots materials have received extensive attention, owing to their distinct advantages such as biocompatibility, low toxicity and high photostability. Methods: MnO2 nanosheets on the Si nanoparticles (NPs) surface serve as a quencher. Si NPs fluorescence can make a recovery by the addition of H2O2, which can reduce MnO2 to Mn2+, and the glucose can thus be monitored based on the enzymatic conversion of glucose by glucose oxidase to generate H2O2. Therefore, the glucose concentration can be derived by recording the fluorescence recovery spectra of the Si NPs. Results: This probe enabled selective detection of glucose with a linear range of 1-100 μg/mL and a limit of detection of 0.98 μg/mL. Compared with the commercial glucometer, this method showed favorable results and convincing reliability. Conclusion: We have developed a novel method based on MnO2 -nanosheet-modified Si NPs for rapid monitoring of blood glucose levels. By combining the highly sensitive H2O2/MnO2 reaction with the excellent photostability of Si NPs, a highly sensitive, selective, and cost-efficient sensing approach for glucose detection has been designed and applied to monitor glucose levels in human serum with satisfactory results.


Nanoscale ◽  
2021 ◽  
Author(s):  
Soon-Hwan Kwon ◽  
Tae-Hyeon Kim ◽  
Sang-Min Kim ◽  
Semi Oh ◽  
Kyoung-Kook Kim

Nanostructured semiconducting metal oxides such as SnO2, ZnO, TiO2, and CuO have been widely used to fabricate high performance gas sensors. To improve the sensitivity and stability of gas sensors,...


2021 ◽  
Vol 347 ◽  
pp. 130653
Author(s):  
Jiang Zhao ◽  
Caidong Zheng ◽  
Jing Gao ◽  
Jiahao Gui ◽  
Licheng Deng ◽  
...  

2016 ◽  
Vol 222 ◽  
pp. 1709-1715 ◽  
Author(s):  
Chuanxin He ◽  
Minsui Xie ◽  
Fei Hong ◽  
Xiaoyan Chai ◽  
Hongwei Mi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document