semiconducting metal oxides
Recently Published Documents


TOTAL DOCUMENTS

78
(FIVE YEARS 32)

H-INDEX

15
(FIVE YEARS 4)

2022 ◽  
pp. 103-136
Author(s):  
Shahid Mehmood ◽  
Usman Ahmed ◽  
Laveet Kumar ◽  
Suresh Sagadevan ◽  
Mohammad Hatamvand ◽  
...  

2021 ◽  
Vol 7 (3) ◽  
pp. 949-951
Author(s):  
K. Pakiyaraj ◽  
V. Kirthika

In recent years, a transparent conducting oxide (TCO) SnO2 semiconductor have gained considerable attention due to their potential application in gas sensors. More number of studies on TCO oxide have focused on the semiconducting metal oxides in which an intensive argument is that the transparent semiconductors. The SnO2 thin films were deposited at 400 °C and then annealed at 500 °C and 600 °C and its structural, optical and electrical properties were characterized. The doping stoichiometric ratio was maintained as 4% and the resulting solution was sprayed on glass substrate which was kept at nozzle distance of 25 cm and the spray rate was 10 mL/min. The prepared pure SnO2 thin films have been characterized by different methods such as XRD, FESEM, UV-Vis NIR and EDAX analyses. It was found that the nanocrystalline SnO2 grains possesses structural features of the tetragonal rutile structure. Hence the prepared thin films are justified to be nanocrystalline and also the mean crystalline size decreased with respect to annealing temperature.


Author(s):  
Komargoud Prakruthi ◽  
Mukkati Praveena Ujwal ◽  
Shivamurthy Ravindra Yashas ◽  
Basavaraju Mahesh ◽  
Ningappa Kumara Swamy ◽  
...  

2021 ◽  
Vol 5 (1) ◽  

The results of studies of many types of semiconductor H2 O2 sensors are discussed in this review of 185 articles about hydrogen peroxide. The properties of electrochemical detectors, sensors based on organic and inorganic materials, graphene, and nano-sensors are analyzed. Optical and fluorescent sensors, detectors made of porous materials, quantum dots, fibers, and spheres are briefly discussed. The results of our studies in the YSU of hydrogen peroxide sensors made from solid solutions of carbon nanotubes with semiconducting metal oxides are also presented in the review. The fundamentals of the manufacture of biomarkers of respiration containing hydrogen peroxide vapors, which make it possible to judge the degree of a person's illness with various respiratory diseases (asthma, lung cancer, etc.), are discussed.


2021 ◽  
Vol 445 ◽  
pp. 214086
Author(s):  
Gen Wang ◽  
Shengjiong Yang ◽  
Li Cao ◽  
Pengkang Jin ◽  
Xiangkang Zeng ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xinghui Liu ◽  
Shibo Xi ◽  
Hyunwoo Kim ◽  
Ashwani Kumar ◽  
Jinsun Lee ◽  
...  

AbstractThe poor catalyst stability in acidic oxidation evolution reaction (OER) has been a long-time issue. Herein, we introduce electron-deficient metal on semiconducting metal oxides-consisting of Ir (Rh, Au, Ru)-MoO3 embedded by graphitic carbon layers (IMO) using an electrospinning method. We systematically investigate IMO’s structure, electron transfer behaviors, and OER catalytic performance by combining experimental and theoretical studies. Remarkably, IMO with an electron-deficient metal surface (Irx+; x > 4) exhibit a low overpotential of only ~156 mV at 10 mA cm−2 and excellent durability in acidic media due to the high oxidation state of metal on MoO3. Furthermore, the proton dissociation pathway is suggested via surface oxygen serving as proton acceptors. This study suggests high stability with high catalytic performance in these materials by creating electron-deficient surfaces and provides a general, unique strategy for guiding the design of other metal-semiconductor nanocatalysts.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6454
Author(s):  
Sachin Navale ◽  
Mehrdad Shahbaz ◽  
Ali Mirzaei ◽  
Sang Sub Kim ◽  
Hyoun Woo Kim

Nanostructured semiconducting metal oxides (SMOs) are among the most popular sensing materials for integration into resistive-type gas sensors owing to their low costs and high sensing performances. SMOs can be decorated or doped with noble metals to further enhance their gas sensing properties. Ag is one of the cheapest noble metals, and it is extensively used in the decoration or doping of SMOs to boost the overall gas-sensing performances of SMOs. In this review, we discussed the impact of Ag addition on the gas-sensing properties of nanostructured resistive-based gas sensors. Ag-decorated or -doped SMOs often exhibit better responsivities/selectivities at low sensing temperatures and shorter response times than those of their pristine counterparts. Herein, the focus was on the detection mechanism of SMO-based gas sensors in the presence of Ag. This review can provide insights for research on SMO-based gas sensors.


Chemosensors ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 127
Author(s):  
Sachin Navale ◽  
Mehrdad Shahbaz ◽  
Sanjit Manohar Majhi ◽  
Ali Mirzaei ◽  
Hyoun-Woo Kim ◽  
...  

H2S gas is a toxic and hazardous byproduct of the oil and gas industries. It paralyzes the olfactory nerves, with concentrations above 100 ppm, resulting in loss of smell; prolonged inhalation may even cause death. One of the most important semiconducting metal oxides for the detection of H2S is CuxO (x = 1, 2), which is converted to CuxS upon exposure to H2S, leading to a remarkable modulation in the resistance and appearance of an electrical sensing signal. In this review, various morphologies of CuxO in the pristine form, composites of CuxO with other materials, and decoration/doping of noble metals on CuxO nanostructures for the reliable detection of H2S gas are thoroughly discussed. With an emphasis to the detection mechanism of CuxO-based gas sensors, this review presents findings that are of considerable value as a reference.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2271
Author(s):  
Alishba T. John ◽  
Krishnan Murugappan ◽  
David R. Nisbet ◽  
Antonio Tricoli

An electronic nose (Enose) relies on the use of an array of partially selective chemical gas sensors for identification of various chemical compounds, including volatile organic compounds in gas mixtures. They have been proposed as a portable low-cost technology to analyse complex odours in the food industry and for environmental monitoring. Recent advances in nanofabrication, sensor and microcircuitry design, neural networks, and system integration have considerably improved the efficacy of Enose devices. Here, we highlight different types of semiconducting metal oxides as well as their sensing mechanism and integration into Enose systems, including different pattern recognition techniques employed for data analysis. We offer a critical perspective of state-of-the-art commercial and custom-made Enoses, identifying current challenges for the broader uptake and use of Enose systems in a variety of applications.


2021 ◽  

The book covers the sensing and monitoring of poisonous carbon monoxide pollution in the environment. The sensors covered include semiconducting metal oxides, carbon nanotubes, conducting polymeric thin films, sensors based on colorimetric detection, non-dispersive infrared sensors, electrochemical sensors and photoacoustic detectors.


Sign in / Sign up

Export Citation Format

Share Document