Ultraviolet light-emitting diode-assisted highly sensitive room temperature NO2 gas sensor for low-temperature solution-processed ZnO/TiO2 nanorods decorated with plasmonic Au nanoparticles

Nanoscale ◽  
2021 ◽  
Author(s):  
Soon-Hwan Kwon ◽  
Tae-Hyeon Kim ◽  
Sang-Min Kim ◽  
Semi Oh ◽  
Kyoung-Kook Kim

Nanostructured semiconducting metal oxides such as SnO2, ZnO, TiO2, and CuO have been widely used to fabricate high performance gas sensors. To improve the sensitivity and stability of gas sensors,...

2007 ◽  
Vol 1039 ◽  
Author(s):  
Hiromitsu Kato ◽  
Toshiharu Makino ◽  
Satoshi Yamasaki ◽  
Hideyo Okushi

AbstractPhosphorus doping on (001)-oriented diamond is introduced and compared with results achieved on (111) diamond. Detailed procedures, conditions, doping characteristics, and recent electrical properties of (001) phosphorus-doped diamond films are described. Now the highest mobility is reached to be ∼780 cm2/Vs at room temperature. The carrier compensation ratio, which is still high around 50-80 %, is the most important issues for (001) phosphorus-doped diamond to improve its electrical property. The origin of compensators in phosphorus-doped diamond is investigated, while yet to be identified.Ultraviolet light emitting diode with p-i-n junction structure is also introduced using (001) n-type diamond. A strong UV light emission at around ∼240 nm is observed even at room temperature. High performance of diamond UV-LED is demonstrated.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1489
Author(s):  
Bhaskar Parida ◽  
Saemon Yoon ◽  
Dong-Won Kang

Materials and processing of transparent electrodes (TEs) are key factors to creating high-performance translucent perovskite solar cells. To date, sputtered indium tin oxide (ITO) has been a general option for a rear TE of translucent solar cells. However, it requires a rather high cost due to vacuum process and also typically causes plasma damage to the underlying layer. Therefore, we introduced TE based on ITO nanoparticles (ITO-NPs) by solution processing in ambient air without any heat treatment. As it reveals insufficient conductivity, Ag nanowires (Ag-NWs) are additionally coated. The ITO-NPs/Ag-NW (0D/1D) bilayer TE exhibits a better figure of merit than sputtered ITO. After constructing CsPbBr3 perovskite solar cells, the device with 0D/1D TE offers similar average visible transmission with the cells with sputtered ITO. More interestingly, the power conversion efficiency of 0D/1D TE device was 5.64%, which outperforms the cell (4.14%) made with sputtered-ITO. These impressive findings could open up a new pathway for the development of low-cost, translucent solar cells with quick processing under ambient air at room temperature.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Mingming Jiang ◽  
Fupeng Zhang ◽  
Kai Tang ◽  
Peng Wan ◽  
Caixia Kan

Achieving electrically-driven exciton-polaritons has drawn substantial attention toward developing ultralow-threshold coherent light sources, containing polariton laser devices and high-performance light-emitting diodes (LEDs). In this work, we demonstrate an electrically driven...


Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 2123 ◽  
Author(s):  
Wenli Li ◽  
Yong Zhang ◽  
Xia Long ◽  
Juexian Cao ◽  
Xin Xin ◽  
...  

The unique properties of MoS2 nanosheets make them a promising candidate for high-performance room temperature gas detection. Herein, few-layer MoS2 nanosheets (FLMN) prepared via mechanical exfoliation are coated on a substrate with interdigital electrodes for room-temperature NO2 detection. Interestingly, compared with other NO2 gas sensors based on MoS2, FLMN gas sensors exhibit high responsivity for room-temperature NO2 detection, and NO2 is easily desorbed from the sensor surface with an ultrafast recovery behavior, with recovery times around 2 s. The high responsivity is related to the fact that the adsorbed NO2 can affect the electron states within the entire material, which is attributed to the very small thickness of the MoS2 nanosheets. First-principles calculations were carried out based on the density functional theory (DFT) to verify that the ultrafast recovery behavior arises from the weak van der Waals binding between NO2 and the MoS2 surface. Our work suggests that FLMN prepared via mechanical exfoliation have a great potential for fabricating high-performance NO2 gas sensors.


2012 ◽  
Vol 20 (14) ◽  
pp. 14921 ◽  
Author(s):  
Seongjae Cho ◽  
Byung-Gook Park ◽  
Changjae Yang ◽  
Stanley Cheung ◽  
Euijoon Yoon ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Fumiya Osawa ◽  
Kazuhiro Marumoto

Abstract Spin-states and charge-trappings in blue organic light-emitting diodes (OLEDs) are important issues for developing high-device-performance application such as full-color displays and white illumination. However, they have not yet been completely clarified because of the lack of a study from a microscopic viewpoint. Here, we report operando electron spin resonance (ESR) spectroscopy to investigate the spin-states and charge-trappings in organic semiconductor materials used for blue OLEDs such as a blue light-emitting material 1-bis(2-naphthyl)anthracene (ADN) using metal–insulator–semiconductor (MIS) diodes, hole or electron only devices, and blue OLEDs from the microscopic viewpoint. We have clarified spin-states of electrically accumulated holes and electrons and their charge-trappings in the MIS diodes at the molecular level by directly observing their electrically-induced ESR signals; the spin-states are well reproduced by density functional theory. In contrast to a green light-emitting material, the ADN radical anions largely accumulate in the film, which will cause the large degradation of the molecule and devices. The result will give deeper understanding of blue OLEDs and be useful for developing high-performance and durable devices.


Sign in / Sign up

Export Citation Format

Share Document