Gold nanoprobe functionalized with specific fusion protein selection from phage display and its application in rapid, selective and sensitive colorimetric biosensing of Staphylococcus aureus

2016 ◽  
Vol 82 ◽  
pp. 195-203 ◽  
Author(s):  
Pei Liu ◽  
Lei Han ◽  
Fei Wang ◽  
Valery A. Petrenko ◽  
Aihua Liu
1991 ◽  
Vol 273 (3) ◽  
pp. 517-522 ◽  
Author(s):  
L E Grosso ◽  
W C Parks ◽  
L J Wu ◽  
R P Mecham

A bovine tropoelastin cDNA encoding exons 15-36 that includes the elastin-receptor binding site was expressed in Escherichia coli as a fusion protein with Protein A from Staphylococcus aureus. After isolation of the fusion protein by affinity chromatography on Ig-Sepharose, the tropoelastin domain was separated from plasmid-pR1T2T-encoded Protein A (Protein A') by CNBr cleavage. Cell-adhesion assays demonstrated specific adhesion to the recombinant tropoelastin. Furthermore, the data indicate that interactions involving the bovine elastin receptor mediate nuchalligament fibroblast adhesion to the recombinant protein. In agreement with earlier studies of fibroblast chemotaxis to bovine tropoelastin, nuchal-ligament fibroblast adhesion demonstrated developmental regulation of the elastin receptor.


mBio ◽  
2020 ◽  
Vol 11 (3) ◽  
Author(s):  
David N. Hernandez ◽  
Kayan Tam ◽  
Bo Shopsin ◽  
Emily E. Radke ◽  
Karen Law ◽  
...  

ABSTRACT Staphylococcus aureus infection is a major public health threat in part due to the spread of antibiotic resistance and repeated failures to develop a protective vaccine. Infection is associated with production of virulence factors that include exotoxins that attack host barriers and cellular defenses, such as the leukocidin (Luk) family of bicomponent pore-forming toxins. To investigate the structural basis of antibody-mediated functional inactivation of Luk toxins, we generated a panel of murine monoclonal antibodies (MAbs) that neutralize host cell killing by the γ-hemolysin HlgCB. By biopanning these MAbs against a phage-display library of random Luk peptide fragments, we identified a small subregion within the rim domain of HlgC as the epitope for all the MAbs. Within the native holotoxin, this subregion folds into a conserved β-hairpin structure, with exposed key residues, His252 and Tyr253, required for antibody binding. On the basis of the phage-display results and molecular modeling, a 15-amino-acid synthetic peptide representing the minimal epitope on HlgC (HlgC241-255) was designed, and preincubation with this peptide blocked antibody-mediated HIgCB neutralization. Immunization of mice with HlgC241-255 or the homologous LukS246-260 subregion peptide elicited serum antibodies that specifically recognized the native holotoxin subunits. Furthermore, serum IgG from patients who were convalescent for invasive S. aureus infection showed neutralization of HlgCB toxin activity ex vivo, which recognized the immunodominant HlgC241-255 peptide and was dependent on His252 and Tyr253 residues. We have thus validated an efficient, rapid, and scalable experimental workflow for identification of immunodominant and immunogenic leukotoxin-neutralizing B-cell epitopes that can be exploited for new S. aureus-protective vaccines and immunotherapies.


2020 ◽  
Vol 33 ◽  
Author(s):  
Alex Chang ◽  
Joey P Ting ◽  
Alfonso Espada ◽  
Howard Broughton ◽  
Manuel Molina-Martin ◽  
...  

Abstract Intrinsic low display level of polypeptides on phage is a fundamental and limiting hurdle in successful isolation of target-specific binders by phage display technology. To circumvent this challenge, we optimized the copy number of peptides displayed on the phage surface using type 33 phage vector. We randomized the first 67 amino acids of the wild type PIII to identify mutants that would result in its reduced expression. Consequently, the display level was improved by 30-fold due to higher incorporation of the synthetic PIII–peptide fusion protein on the phage surface. Utilization of this novel phage vector should provide a solid basis for the discovery of therapeutic peptides.


2004 ◽  
Vol 53 (10) ◽  
pp. 945-951 ◽  
Author(s):  
Joakim Bjerketorp ◽  
Anna Rosander ◽  
Martin Nilsson ◽  
Karin Jacobsson ◽  
Lars Frykberg

2003 ◽  
Vol 71 (8) ◽  
pp. 4633-4641 ◽  
Author(s):  
Thomas Weichhart ◽  
Markus Horky ◽  
Johannes Söllner ◽  
Susanne Gangl ◽  
Tamàs Henics ◽  
...  

ABSTRACT An in vitro protein selection method, ribosome display, has been applied to comprehensively identify and map the immunologically relevant proteins of the human pathogen Staphylococcus aureus. A library built up from genomic fragments of the virulent S. aureus COL strain (methicillin-resistant S. aureus) allowed us to screen all possible encoded peptides for immunoreactivity. As selective agents, human sera exhibiting a high antibody titer and opsonic activity against S. aureus were used, since these antibodies indicate the in vivo expression and immunoreactivity of the corresponding proteins. Identified clones cluster in distinct regions of 75 genes, most of them classifiable as secreted or surface-localized proteins, including previously identified virulence factors. In addition, 14 putative novel short open reading frames were identified and their immunoreactivity and in vivo mRNA expression were confirmed, underscoring the annotation-independent, true genomic nature of our approach. Evidence is provided that a large fraction of the identified peptides cannot be expressed in an in vivo-based surface display system. Thus, in vitro protein selection, not biased by the context of living entities, allows screening of genomic expression libraries with a large number of different ligands simultaneously. It is a powerful approach for fingerprinting the repertoire of immune reactive proteins serving as target candidates for active and passive vaccination against pathogens.


2019 ◽  
Vol 5 (2) ◽  
pp. 158-175 ◽  
Author(s):  
Natalia Y. Kovalskaya ◽  
◽  
Eleanor E. Herndon ◽  
Juli A. Foster-Frey ◽  
David M. Donovan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document