An ultrasensitive electrochemiluminescence biosensor for MicroRNA detection based on luminol-functionalized Au NPs@ZnO nanomaterials as signal probe and dissolved O2 as coreactant

2019 ◽  
Vol 135 ◽  
pp. 8-13 ◽  
Author(s):  
Xiaoli Zhang ◽  
Weimin Li ◽  
Ying Zhou ◽  
Yaqin Chai ◽  
Ruo Yuan
2021 ◽  
Author(s):  
Mengrao Li ◽  
Wenjuan Zhang ◽  
Yuzhong Zhang

In this work, we reported a simple and sensitive electrochemical immunosensor for cancer biomarkers PSA detection. In design protocol, gold nanoparticles (Au NPs) were used a carrier to load aptamer...


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Delia Teresa Sponza ◽  
Cansu Doğanx

The scope of this study, is  1-butanol production from CO2 with S. elongatus PCC 7942 culture. The yields of 1-butanolproduced/CO2utilized have been calculated. The maximum concentration of produced 1- butanol is 35.37 mg/L and 1-butanolproduced/CO2utilized efficiency is 92.4. The optimum operational conditions were  30°C temperature, 60 W intensity of light, pH= 7.1, 120 mV redox potential, 0.083 m3/sn flow rate with CO2 and 0.5 mg/l dissolved O2 concentration. Among the enzymes on the metabolic trail of the production of 1-butanol via using S. elongatus PCC 7942 cyanobacteria. At maximum yield; the measured concentrations are 0.016 µg/ml for hbd; 0.0022 µg/ml for Ter and 0.0048 µg/ml for AdhE2. The cost analyses necessary for 1-butanol production has been done and the cost of 1 litre 1-butanol has been determined as maximum 1.31 TL/L.


2019 ◽  
Vol 8 (1) ◽  
pp. 56-61
Author(s):  
Aneeya K. Samantara ◽  
Debasrita Dash ◽  
Dipti L. Bhuyan ◽  
Namita Dalai ◽  
Bijayalaxmi Jena

: In this article, we explored the possibility of controlling the reactivity of ZnO nanostructures by modifying its surface with gold nanoparticles (Au NPs). By varying the concentration of Au with different wt% (x = 0.01, 0.05, 0.08, 1 and 2), we have synthesized a series of (ZnO/Aux) nanocomposites (NCs). A thorough investigation of the photocatalytic performance of different wt% of Au NPs on ZnO nanosurface has been carried out. It was observed that ZnO/Au0.08 nanocomposite showed the highest photocatalytic activity among all concentrations of Au on the ZnO surface, which degrades the dye concentration within 2 minutes of visible light exposure. It was further revealed that with an increase in the size of plasmonic nanoparticles beyond 0.08%, the accessible surface area of the Au nanoparticle decreases. The photon absorption capacity of Au nanoparticle decreases beyond 0.08% resulting in a decrease in electron transfer rate from Au to ZnO and a decrease of photocatalytic activity. Background: Due to the industrialization process, most of the toxic materials go into the water bodies, affecting the water and our ecological system. The conventional techniques to remove dyes are expensive and inefficient. Recently, heterogeneous semiconductor materials like TiO2 and ZnO have been regarded as potential candidates for the removal of dye from the water system. Objective: To investigate the photocatalytic performance of different wt% of Au NPs on ZnO nanosurface and the effect of the size of Au NPs for photocatalytic performance in the degradation process. Methods: A facile microwave method has been adopted for the synthesis of ZnO nanostructure followed by a reduction of gold salt in the presence of ZnO nanostructure to form the composite. Results: ZnO/Au0.08 nanocomposite showed the highest photocatalytic activity which degrades the dye concentration within 2 minutes of visible light exposure. The schematic mechanism of electron transfer rate was discussed. Conclusion: Raspberry shaped ZnO nanoparticles modified with different percentages of Au NPs showed good photocatalytic behavior in the degradation of dye molecules. The synergetic effect of unique morphology of ZnO and well anchored Au nanostructures plays a crucial role.


2021 ◽  
Author(s):  
Salvatore Moschetto ◽  
Andrea Ienco ◽  
Gabriele Manca ◽  
Manuel Serrano-Ruiz ◽  
Maurizio Peruzzini ◽  
...  

Heterostructures of single- and few-layer black phosphorus (2D bP) functionalized with gold nanoparticles (Au NPs) have been recently reported in the literature, exploiting their intriguing properties and biocompatibility for catalytic,...


Author(s):  
Spyridon Damilos ◽  
Ioannis Alissandratos ◽  
Luca Panariello ◽  
Anand N. P. Radhakrishnan ◽  
Enhong Cao ◽  
...  

AbstractA continuous manufacturing platform was developed for the synthesis of aqueous colloidal 10–20 nm gold nanoparticles (Au NPs) in a flow reactor using chloroauric acid, sodium citrate and citric acid at 95 oC and 2.3 bar(a) pressure. The use of a two-phase flow system – using heptane as the continuous phase – prevented fouling on the reactor walls, while improving the residence time distribution. Continuous syntheses for up to 2 h demonstrated its potential application for continuous manufacturing, while live quality control was established using online UV-Vis photospectrometry that monitored the particle size and process yield. The synthesis was stable and reproducible over time for gold precursor concentration above 0.23 mM (after mixing), resulting in average particle size between 12 and 15 nm. A hydrophobic membrane separator provided successful separation of the aqueous and organic phases and collection of colloidal Au NPs in flow. Process yield increased at higher inlet flow rates (from 70 % to almost 100 %), due to lower residence time of the colloidal solution in the separator resulting in less fouling in the PTFE membrane. This study addresses the challenges for the translation of the synthesis from batch to flow and provides tools for the development of a continuous manufacturing platform for gold nanoparticles.Graphical abstract


2017 ◽  
Vol 43 (11) ◽  
pp. 8509-8516 ◽  
Author(s):  
E.K. Papynov ◽  
O.O. Shichalin ◽  
V.Yu. Mayorov ◽  
E.B. Modin ◽  
A.S. Portnyagin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document