Effect of degumming on physicochemical properties of fatty acid ethyl esters obtained from Acacia nilotica seed oil

2021 ◽  
Vol 14 ◽  
pp. 100678
Author(s):  
Bilal Muhammad Abdullahi ◽  
Auwalu Garba ◽  
Aliyu Salihu ◽  
Muhammad Auwal Saliu
Author(s):  
Mehdi Ashraf-Khorassani ◽  
William Monroe Coleman ◽  
Michael Francis Dube ◽  
Giorgis Isaac ◽  
Larry Thomas Taylor

SummaryThe goal of the study was to quantify fatty acid ethyl esters (FAEE’s) produced from two large batches of tobacco seed oil after trans-esterification by heating in ethanol with sulfuric acid catalyst. Purification of the combined ethyl ester reaction products by removing as much of the color and odor from the final product as possible was achieved via conventional column chromatography with amorphous silica and tandem elution of first hexane and then ethyl alcohol as the mobile phase. Gas chromatography was used to quantify specific FAEE’s in the purified material. Recovery of pure FAEE's in batch #1 was near 87%; while, recovery of FAEE’s in batch #2 was greater than 89% with mass yields greater than 400 g of ethyl esters per esterification trial. The FAEE’s possessed no detectable aroma and only a slight yellow color after this chromatographic treatment. Supercritical fluid chromatography with a mobile phase of methanol/acetonitrile modified carbon dioxide and an octadecyl bonded silica stationary phase were used to characterize the purity of each batch of fatty acid ethyl ester product. No free fatty acids nor glycerolrelated impurities were detected in the purified transesterified product.This is the first report describing the optimized trans-esterification of tobacco seed oil on a relatively large scale coupled with subsequent purification and isolation of the resultant ethyl esters. [Beitr. Tabakforsch. Int. 26 (2015) 205-213]


2021 ◽  
Vol 83 ◽  
pp. 106946
Author(s):  
Meeyoung O. Min ◽  
Sonia Minnes ◽  
Hasina Momotaz ◽  
Lynn T. Singer ◽  
Anna Wasden ◽  
...  

2021 ◽  
Vol 413 (11) ◽  
pp. 3093-3105
Author(s):  
Mateusz Kacper Woźniak ◽  
Laura Banaszkiewicz ◽  
Justyna Aszyk ◽  
Marek Wiergowski ◽  
Iwona Jańczewska ◽  
...  

AbstractAlcohol consumption during pregnancy constitutes one of the leading preventable causes of birth defects and neurodevelopmental disorders in the exposed children. Fatty acid ethyl esters (FAEEs), ethyl glucuronide (EtG) and ethyl sulfate (EtS) have been studied as potential biomarkers of alcohol consumption. However, most analytical approaches proposed for their analysis in meconium samples consist of separated extraction procedures requiring the use of two meconium aliquots, which is costly in terms of both time and materials. Therefore, the aim of this study was to develop and validate a method for the simultaneous extraction of 9 FAEEs, EtG and EtS from one meconium aliquot. The sample was homogenized using methanol, and then FAEEs were extracted with hexane while EtG and EtS were isolated using acetonitrile. Then, extracts were applied to solid-phase extraction columns and analysed by gas chromatography mass spectrometry (FAEEs) and liquid chromatography tandem mass spectrometry (EtG and EtS). Calibration curves were linear with r values greater than 0.99. The LODs ranged from 0.8 to 7.5 ng/g for FAEEs and were 0.2 ng/g and 0.8 ng/g for EtS and EtG, respectively. LOQs ranged from 5 to 25 ng/g for FAEEs and were 1 ng/g and 2.5 ng/g for EtS and EtG, respectively. Accuracies and precisions were between 93.8 and 107% and between 3.5 and 9.7%, respectively. The recovery values ranged from 89.1 to 109%. The method proved to be sensitive, specific, simple and fast and allowed for the reduction of the amount of organic solvent used for extraction compared to other published data while higher recoveries were obtained. The method was used for analysis of meconium samples in two cases of mothers who were consuming alcohol during pregnancy.


2010 ◽  
Vol 76 (13) ◽  
pp. 4560-4565 ◽  
Author(s):  
Yasser Elbahloul ◽  
Alexander Steinbüchel

ABSTRACT Fatty acid ethyl esters (FAEEs) were produced in this study by the use of an engineered Escherichia coli p(Microdiesel) strain. Four fed-batch pilot scale cultivations were carried out by first using glycerol as sole carbon source for biomass production before glucose and oleic acid were added as carbon sources. Cultivations yielded a cell density of up to 61 ± 3.1 g of cell dry mass (CDM) per liter and a maximal FAEE content of 25.4% ± 1.1% (wt/wt) of CDM.


Sign in / Sign up

Export Citation Format

Share Document