scholarly journals WITHDRAWN: The effect of coenzyme q10 on a rat model of oleic acid-induced acute lung injury

Author(s):  
Melike Korkmaz ◽  
I. Aydin Erden ◽  
Sennur Uzun ◽  
S. Banu Akinci ◽  
Gonul Erden ◽  
...  
2021 ◽  
Vol 65 ◽  
pp. 103-108
Author(s):  
Sudhashekhar Kumar ◽  
Priyanka Bhagat ◽  
Shashikant C. U. Patne ◽  
Ratna Pandey

Objectives: Acute lung injury (ALI) is an inflammatory condition, therefore, this study was undertaken to determine the effect of insulin (an immunomodulatory agent) in oleic acid (OA)-induced ALI in rat model. Materials and Methods: The experiments were performed on adult male albino rats (total n = 18). The trachea, jugular vein and carotid artery of anaesthetised adult rats were cannulated to keep the respiratory tract patent, deliver saline/drugs and recording of blood pressure, respectively. Animals were divided into three groups. In Group I (control group), normal saline (75 μL) was injected and this group served as control group. In Group II (OA group), OA (75 μL) was administered to induce ALI in rats. In Group III (insulin + OA), OA (75 μL) was injected in insulin pre-treated rats. Respiratory frequency (RF), heart rate (HR) and mean arterial pressure (MAP) were recorded on computerised chart recorder; arterial blood sample was collected to determine PaO2/FiO2. Further, pulmonary water content was determined, and histological examination of the lung was done in all animals. Results: Injection of OA produced ALI indicated by significant increase in RF by 30 min followed by progressive decrease and ultimately death of animal. Significant increase in the pulmonary water content and decrease in PaO2/FiO2 were observed in these animals. Histological examination of lungs showed damage to the lung parenchyma. An immediate decrease in HR and MAP followed by some improvement and then progressive decrease was also observed. Conclusions: Insulin (an immunomodulatory agent) pre-treatment delayed initiation of OA-induced ALI as indicated by protection against OA-induced severe alteration in the RF in the initial stage and less lung injury in histological examination, although; it could not alter the overall course of the disease.


2013 ◽  
Vol 17 (3) ◽  
pp. 799-807 ◽  
Author(s):  
Ning Wang ◽  
Xin Liu ◽  
Xinchuan Zheng ◽  
Hongwei Cao ◽  
Guo Wei ◽  
...  

2017 ◽  
Vol 74 (1) ◽  
pp. 25-33 ◽  
Author(s):  
Zhiqiang Ye ◽  
Xuhui Liu ◽  
Yuewu Yang ◽  
Xianling Zhang ◽  
Ting Yu ◽  
...  

2021 ◽  
Vol 263 ◽  
pp. 291
Author(s):  
Georgia Kostopanagiotou ◽  
Efthimios Avgerinos ◽  
Konstantinos Kostopanagiotou ◽  
Nikolaos Arkadopoulos ◽  
Ioanna Andreadou ◽  
...  

1999 ◽  
Vol 43 (10) ◽  
pp. 2389-2394 ◽  
Author(s):  
Erika J. Ernst ◽  
Satoru Hashimoto ◽  
Joseph Guglielmo ◽  
Teiji Sawa ◽  
Jean-Francois Pittet ◽  
...  

ABSTRACT The effect of antibiotics on the acute lung injury induced by virulent Pseudomonas aeruginosa PA103 was quantitatively analyzed in a rat model. Lung injury was induced by the instillation of PA103 directly into the right lower lobes of the lungs of anesthetized rats. The alveolar epithelial injury, extravascular lung water, and total plasma equivalents were measured as separate, independent parameters of acute lung injury. Four hours after the instillation of PA103, all the parameters were increased linearly depending on the dose of P. aeruginosa. Next, we examined the effects of intravenously administered antibiotics on the parameters of acute lung injury in d-galactosamine-sensitized rats. One hour after the rats received 107 CFU of PA103, an intravenous bolus injection of aztreonam (60 mg/kg) or imipenem-cilastatin (30 mg/kg) was administered. Despite an MIC indicating resistance, imipenem-cilastatin improved all the measurements of lung injury; in contrast, aztreonam, which had an MIC indicating sensitivity, did not improve any of the lung injury parameters. The antibiotics did not generate different quantities of plasma endotoxin; therefore, endotoxin did not appear to explain the differences in lung injury. This in vivo model is useful to quantitatively compare the efficacies of parenteral antibiotic administration on Pseudomonas airspace infections.


2008 ◽  
Vol 379 (3) ◽  
pp. 281-290 ◽  
Author(s):  
A. Jakubowski ◽  
N. Maksimovich ◽  
R. Olszanecki ◽  
A. Gebska ◽  
H. Gasser ◽  
...  

2005 ◽  
Vol 288 (3) ◽  
pp. L536-L545 ◽  
Author(s):  
Jackeline Agorreta ◽  
Javier J. Zulueta ◽  
Luis M. Montuenga ◽  
Mercedes Garayoa

Adrenomedullin (ADM) is upregulated independently by hypoxia and LPS, two key factors in the pathogenesis of acute lung injury (ALI). This study evaluates the expression of ADM in ALI using experimental models combining both stimuli: an in vivo model of rats treated with LPS and acute normobaric hypoxia (9% O2) and an in vitro model of rat lung cell lines cultured with LPS and exposed to hypoxia (1% O2). ADM expression was analyzed by in situ hybridization, Northern blot, Western blot, and RIA analyses. In the rat lung, combination of hypoxia and LPS treatments overcomes ADM induction occurring after each treatment alone. With in situ techniques, the synergistic effect of both stimuli mainly correlates with ADM expression in inflammatory cells within blood vessels and, to a lesser extent, to cells in the lung parenchyma and bronchiolar epithelial cells. In the in vitro model, hypoxia and hypoxia + LPS treatments caused a similar strong induction of ADM expression and secretion in epithelial and endothelial cell lines. In alveolar macrophages, however, LPS-induced ADM expression and secretion were further increased by the concomitant exposure to hypoxia, thus paralleling the in vivo response. In conclusion, ADM expression is highly induced in a variety of key lung cell types in this rat model of ALI by combination of hypoxia and LPS, suggesting an essential role for this mediator in this syndrome.


Sign in / Sign up

Export Citation Format

Share Document