Spiro-naphthyridinone piperidines as inhibitors of S. aureus and E. coli enoyl-ACP reductase (FabI)

2009 ◽  
Vol 19 (18) ◽  
pp. 5355-5358 ◽  
Author(s):  
Peter B. Sampson ◽  
Christine Picard ◽  
Sean Handerson ◽  
Teresa E. McGrath ◽  
Megan Domagala ◽  
...  
Keyword(s):  
E Coli ◽  
Author(s):  
Shuai Li ◽  
Eirik A. Moreb ◽  
Zhixia Ye ◽  
Jennifer N. Hennigan ◽  
Daniel Baez Castellanos ◽  
...  

AbstractWe report improved NADPH flux and xylitol biosynthesis in engineered E. coli. Xylitol is produced from xylose via an NADPH dependent reductase. We utilize two-stage dynamic metabolic control to compare two approaches to optimize xylitol biosynthesis, a stoichiometric approach, wherein competitive fluxes are decreased, and a regulatory approach wherein the levels of key regulatory metabolites are reduced. The stoichiometric and regulatory approaches lead to a 16 fold and 100 fold improvement in xylitol production, respectively. Strains with reduced levels of enoyl-ACP reductase and glucose-6-phosphate dehydrogenase, led to altered metabolite pools resulting in the activation of the membrane bound transhydrogenase and a new NADPH generation pathway, namely pyruvate ferredoxin oxidoreductase coupled with NADPH dependent ferredoxin reductase, leading to increased NADPH fluxes, despite a reduction in NADPH pools. These strains produced titers of 200 g/L of xylitol from xylose at 86% of theoretical yield in instrumented bioreactors. We expect dynamic control over enoyl-ACP reductase and glucose-6-phosphate dehydrogenase to broadly enable improved NADPH dependent bioconversions.HighlightsDecreases in NADPH pools lead to increased NADPH fluxesPyruvate ferredoxin oxidoreductase coupled with NADPH-ferredoxin reductase improves NADPH production in vivo.Dynamic reduction in acyl-ACP/CoA pools alleviate inhibition of membrane bound transhydrogenase and improve NADPH fluxXylitol titers > 200g/L in fed batch fermentations with xylose as a sole feedstock.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Ainaa Nadiah Abd Halim ◽  
Zainab Ngaini

A series of 1,4-bis(decoxyphenyl)carbamothioyl-terephthalamide derivatives was successfully synthesised by reaction of benzene-1,4-dicarbonyl isothiocyanate intermediates with long alkyl chain. The alkylation was performed via Williamson etherification of 4-acetamidophenol with bromoalkanes. The synthesised bis(thiourea) derivatives differed in the chain length, CnH2n+1, wheren=10, 12, and 14. The structures of all compounds were characterised by elemental CHN analysis, IR,1H, and13C NMR spectroscopies. Bacteriostatic activities of bis(thiourea derivatives which consisted of two folds of N-H, C=O, and C=S and long alkyl chain substituents were carried out against Gram-negative bacteria (Escherichia coli, ATCC 25922) via turbidimetric kinetic method. Bis(thiourea) derivatives withn=10andn=12displayed excellent activity againstE. coliwith MIC of 135 µg/mL and 145 µg/mL, respectively, while bis(thiourea) derivatives withn=14acted as cutoff point with no antibacterial properties. Similar trend was observed in binding affinity to the active site of enoyl ACP reductase (FabI), which demonstrated binding free energy of-5.3 Kcal/mol and-4.9and-4.8 Kcal/mol, respectively.


2015 ◽  
Vol 25 (6) ◽  
pp. 394-402 ◽  
Author(s):  
Taylor L. Fischer ◽  
Robert J. White ◽  
Katherine F.K. Mares ◽  
Devin E. Molnau ◽  
Justin J. Donato

<b><i>Background/Aims:</i></b> We previously identified the Triclo1 fosmid in a functional metagenomic selection for clones that increased triclosan tolerance in <i>Escherichia coli</i>. The active enzyme encoded by Triclo1 is ucFabV. Although ucFabV is homologous to FabV from other organisms, ucFabV contains substitutions at key positions that would predict differences in substrate binding. Therefore, a detailed characterization of ucFabV was conducted to link its biochemical activity to its ability to confer reduced triclosan sensitivity. <b><i>Methods:</i></b> ucFabV and a catalytic mutant were purified and used to reduce crotonoyl-CoA in vitro. The mutant and wild-type enzymes were introduced into <i>E. coli</i>, and their ability to confer triclosan tolerance as well as suppress a temperature-sensitive mutant of FabI were measured. <b><i>Results:</i></b> Purified ucFabV, but not the mutant, reduced crotonoyl-CoA in vitro. The wild-type enzyme confers increased triclosan tolerance when introduced into <i>E. coli</i>, whereas the mutant remained susceptible to triclosan<i>. </i>Additionally, wild-type ucFabV, but not the mutant, functionally replaced FabI within living cells. <b><i>Conclusion:</i></b> ucFabV confers increased tolerance through its function as an enoyl-ACP reductase. Furthermore, ucFabV is capable of restoring viability in the presence of compromised FabI, suggesting ucFabV is likely facilitating an alternate step within fatty acid synthesis, bypassing FabI inhibition.


2009 ◽  
Vol 54 (2) ◽  
pp. 689-698 ◽  
Author(s):  
Lei Zhu ◽  
Jinshui Lin ◽  
Jincheng Ma ◽  
John E. Cronan ◽  
Haihong Wang

ABSTRACT Triclosan, a very widely used biocide, specifically inhibits fatty acid synthesis by inhibition of enoyl-acyl carrier protein (ACP) reductase. Escherichia coli FabI is the prototypical triclosan-sensitive enoyl-ACP reductase, and E. coli is extremely sensitive to the biocide. However, other bacteria are resistant to triclosan, because they encode triclosan-resistant enoyl-ACP reductase isozymes. In contrast, the triclosan resistance of Pseudomonas aeruginosa PAO1 has been attributed to active efflux of the compound (R. Chuanchuen, R. R. Karkhoff-Schweizer, and H. P. Schweizer, Am. J. Infect. Control 31:124-127, 2003). We report that P. aeruginosa contains two enoyl-ACP reductase isozymes, the previously characterized FabI homologue plus a homologue of FabV, a triclosan-resistant enoyl-ACP reductase recently demonstrated in Vibrio cholerae. By deletion of the genes encoding P. aeruginosa FabI and FabV, we demonstrated that FabV confers triclosan resistance on P. aeruginosa. Upon deletion of the fabV gene, the mutant strain became extremely sensitive to triclosan (>2,000-fold more sensitive than the wild-type strain), whereas the mutant strain lacking FabI remained completely resistant to the biocide.


2014 ◽  
Vol 9 (1) ◽  
Author(s):  
Sonia George ◽  
Mohammed Basheer Ramzeena ◽  
Sayee Vignesh Ram ◽  
Senthil Kumar Selvaraj ◽  
Shinu Rajan ◽  
...  

2015 ◽  
Vol 71 (12) ◽  
pp. 1521-1530 ◽  
Author(s):  
Cheryl A. Jordan ◽  
Braddock A. Sandoval ◽  
Mkrtich V. Serobyan ◽  
Damian H. Gilling ◽  
Michael P. Groziak ◽  
...  

Enoyl-ACP reductase, the last enzyme of the fatty-acid biosynthetic pathway, is the molecular target for several successful antibiotics such as the tuberculosis therapeutic isoniazid. It is currently under investigation as a narrow-spectrum antibiotic target for the treatment of several types of bacterial infections. The diazaborine family is a group of boron heterocycle-based synthetic antibacterial inhibitors known to target enoyl-ACP reductase. Development of this class of molecules has thus far focused solely on the sulfonyl-containing versions. Here, the requirement for the sulfonyl group in the diazaborine scaffold was investigated by examining several recently characterized enoyl-ACP reductase inhibitors that lack the sulfonyl group and exhibit additional variability in substitutions, size and flexibility. Biochemical studies are reported showing the inhibition ofEscherichia colienoyl-ACP reductase by four diazaborines, and the crystal structures of two of the inhibitors bound toE. colienoyl-ACP reductase solved to 2.07 and 2.11 Å resolution are reported. The results show that the sulfonyl group can be replaced with an amide or thioamide without disruption of the mode of inhibition of the molecule.


2007 ◽  
Vol 283 (3) ◽  
pp. 1308-1316 ◽  
Author(s):  
R. Prisca Massengo-Tiassé ◽  
John E. Cronan

Enoyl-acyl carrier protein (ACP) reductase catalyzes the last step of the fatty acid elongation cycle. The paradigm enoyl-ACP reductase is the FabI protein of Escherichia coli that is the target of the antibacterial compound, triclosan. However, some Gram-positive bacteria are naturally resistant to triclosan due to the presence of the triclosan-resistant enoyl-ACP reductase isoforms, FabK and FabL. The genome of the Gram-negative bacterium, Vibrio cholerae lacks a gene encoding a homologue of any of the three known enoyl-ACP reductase isozymes suggesting that this organism encodes a novel fourth enoyl-ACP reductase isoform. We report that this is the case. The gene encoding the new isoform, called FabV, was isolated by complementation of a conditionally lethal E. coli fabI mutant strain and was shown to restore fatty acid synthesis to the mutant strain both in vivo and in vitro. Like FabI and FabL, FabV is a member of the short chain dehydrogenase reductase superfamily, although it is considerably larger (402 residues) than either FabI (262 residues) or FabL (250 residues). The FabV, FabI and FabL sequences can be aligned, but only poorly. Alignment requires many gaps and yields only 15% identical residues. Thus, FabV defines a new class of enoyl-ACP reductase. The native FabV protein has been purified to homogeneity and is active with both crotonyl-ACP and the model substrate, crotonyl-CoA. In contrast to FabI and FabL, FabV shows a very strong preference for NADH over NADPH. Expression of FabV in E. coli results in markedly increased resistance to triclosan and the purified enzyme is much more resistant to triclosan than is E. coli FabI.


Sign in / Sign up

Export Citation Format

Share Document