scholarly journals Nfil3, a target of the NACA transcriptional coregulator, affects osteoblast and osteocyte gene expression differentially

Bone ◽  
2020 ◽  
Vol 141 ◽  
pp. 115624
Author(s):  
Hadla Hariri ◽  
Martin Pellicelli ◽  
René St-Arnaud
2011 ◽  
Vol 26 (3) ◽  
pp. 187-199 ◽  
Author(s):  
Ariel H. B. Poliandri ◽  
Joshua J. Gamsby ◽  
Mark Christian ◽  
Michael J. Spinella ◽  
Jennifer J. Loros ◽  
...  

2016 ◽  
Vol 43 (3) ◽  
pp. 141-150 ◽  
Author(s):  
Milica Putnik ◽  
David Brodin ◽  
Tomasz K. Wojdacz ◽  
Fredrik Fagerström-Billai ◽  
Karin Dahlman-Wright ◽  
...  

2008 ◽  
Vol 6 (1) ◽  
pp. nrs.06004 ◽  
Author(s):  
Kevin W. Trotter ◽  
Trevor K. Archer

The packaging of genomic DNA into chromatin, often viewed as an impediment to the transcription process, plays a fundamental role in the regulation of gene expression. Chromatin remodeling proteins have been shown to alter local chromatin structure and facilitate recruitment of essential factors required for transcription. Brahma-related gene-1 (BRG1), the central catalytic subunit of numerous chromatin-modifying enzymatic complexes, uses the energy derived from ATP-hydrolysis to disrupt the chromatin architecture of target promoters. In this review, we examine BRG1 as a major coregulator of transcription. BRG1 has been implicated in the activation and repression of gene expression through the modulation of chromatin in various tissues and physiological conditions. Outstanding examples are studies demonstrating that BRG1 is a necessary component for nuclear receptor-mediated transcriptional activation. The remodeling protein is also associated with transcriptional corepressor complexes which recruit remodeling activity to target promoters for gene silencing. Taken together, BRG1 appears to be a critical modulator of transcriptional regulation in cellular processes including transcriptional regulation, replication, DNA repair and recombination.


Author(s):  
W. K. Jones ◽  
J. Robbins

Two myosin heavy chains (MyHC) are expressed in the mammalian heart and are differentially regulated during development. In the mouse, the α-MyHC is expressed constitutively in the atrium. At birth, the β-MyHC is downregulated and replaced by the α-MyHC, which is the sole cardiac MyHC isoform in the adult heart. We have employed transgenic and gene-targeting methodologies to study the regulation of cardiac MyHC gene expression and the functional and developmental consequences of altered α-MyHC expression in the mouse.We previously characterized an α-MyHC promoter capable of driving tissue-specific and developmentally correct expression of a CAT (chloramphenicol acetyltransferase) marker in the mouse. Tissue surveys detected a small amount of CAT activity in the lung (Fig. 1a). The results of in situ hybridization analyses indicated that the pattern of CAT transcript in the adult heart (Fig. 1b, top panel) is the same as that of α-MyHC (Fig. 1b, lower panel). The α-MyHC gene is expressed in a layer of cardiac muscle (pulmonary myocardium) associated with the pulmonary veins (Fig. 1c). These studies extend our understanding of α-MyHC expression and delimit a third cardiac compartment.


2020 ◽  
Vol 477 (16) ◽  
pp. 3091-3104 ◽  
Author(s):  
Luciana E. Giono ◽  
Alberto R. Kornblihtt

Gene expression is an intricately regulated process that is at the basis of cell differentiation, the maintenance of cell identity and the cellular responses to environmental changes. Alternative splicing, the process by which multiple functionally distinct transcripts are generated from a single gene, is one of the main mechanisms that contribute to expand the coding capacity of genomes and help explain the level of complexity achieved by higher organisms. Eukaryotic transcription is subject to multiple layers of regulation both intrinsic — such as promoter structure — and dynamic, allowing the cell to respond to internal and external signals. Similarly, alternative splicing choices are affected by all of these aspects, mainly through the regulation of transcription elongation, making it a regulatory knob on a par with the regulation of gene expression levels. This review aims to recapitulate some of the history and stepping-stones that led to the paradigms held today about transcription and splicing regulation, with major focus on transcription elongation and its effect on alternative splicing.


2013 ◽  
Vol 54 ◽  
pp. 79-90 ◽  
Author(s):  
Saba Valadkhan ◽  
Lalith S. Gunawardane

Eukaryotic cells contain small, highly abundant, nuclear-localized non-coding RNAs [snRNAs (small nuclear RNAs)] which play important roles in splicing of introns from primary genomic transcripts. Through a combination of RNA–RNA and RNA–protein interactions, two of the snRNPs, U1 and U2, recognize the splice sites and the branch site of introns. A complex remodelling of RNA–RNA and protein-based interactions follows, resulting in the assembly of catalytically competent spliceosomes, in which the snRNAs and their bound proteins play central roles. This process involves formation of extensive base-pairing interactions between U2 and U6, U6 and the 5′ splice site, and U5 and the exonic sequences immediately adjacent to the 5′ and 3′ splice sites. Thus RNA–RNA interactions involving U2, U5 and U6 help position the reacting groups of the first and second steps of splicing. In addition, U6 is also thought to participate in formation of the spliceosomal active site. Furthermore, emerging evidence suggests additional roles for snRNAs in regulation of various aspects of RNA biogenesis, from transcription to polyadenylation and RNA stability. These snRNP-mediated regulatory roles probably serve to ensure the co-ordination of the different processes involved in biogenesis of RNAs and point to the central importance of snRNAs in eukaryotic gene expression.


Sign in / Sign up

Export Citation Format

Share Document