scholarly journals Kinetic Characterization of Non-Muscle Myosin IIB Single-Headed Heavy Meromyosin on Single Molecule Level with Optical Tweezers

2010 ◽  
Vol 98 (3) ◽  
pp. 561a
Author(s):  
Attila Nagy ◽  
Yasuharu Takagi ◽  
Earl E. Homsher ◽  
Davin K.T. Hong ◽  
Mihaly Kovacs ◽  
...  
Physiology ◽  
2002 ◽  
Vol 17 (5) ◽  
pp. 213-218 ◽  
Author(s):  
Caspar Rüegg ◽  
Claudia Veigel ◽  
Justin E. Molloy ◽  
Stephan Schmitz ◽  
John C. Sparrow ◽  
...  

Muscle myosin II is an ATP-driven, actin-based molecular motor. Recent developments in optical tweezers technology have made it possible to study movement and force production on the single-molecule level and to find out how different myosin isoforms may have adapted to their specific physiological roles.


2013 ◽  
Vol 104 (2) ◽  
pp. 642a
Author(s):  
Attila Nagy ◽  
Yasuharu Takagi ◽  
Neil Billington ◽  
Earl Homsher ◽  
James R. Sellers

2012 ◽  
Vol 288 (1) ◽  
pp. 709-722 ◽  
Author(s):  
Attila Nagy ◽  
Yasuharu Takagi ◽  
Neil Billington ◽  
Sara A. Sun ◽  
Davin K. T. Hong ◽  
...  

2013 ◽  
Vol 104 (2) ◽  
pp. 346a
Author(s):  
Xochitl A. Sosa-Vazquez ◽  
Matthew Vander-Schuur ◽  
Liza Valencia ◽  
Elvin A. Aleman

2020 ◽  
Author(s):  
Keith J Mickolajczyk ◽  
Patrick M M Shelton ◽  
Michael Grasso ◽  
Xiaocong Cao ◽  
Sara R Warrington ◽  
...  

The superfamily-1 helicase non-structural protein 13 (nsp13) is required for SARS-CoV-2 replication, making it an important antiviral therapeutic target. The mechanism and regulation of nsp13 has not been explored at the single-molecule level. Specifically, force-dependent unwinding experiments have yet to be performed for any coronavirus helicase. Here, using optical tweezers, we find that nsp13 unwinding frequency, processivity, and velocity increase substantially when a destabilizing force is applied to the dsRNA, suggesting a passive unwinding mechanism. These results, along with bulk assays, depict nsp13 as an intrinsically weak helicase that can be potently activated by picoNewton forces. Such force-dependent behavior contrasts the known behavior of other viral monomeric helicases, drawing stronger parallels to ring-shaped helicases. Our findings suggest that mechanoregulation, which may be provided by a directly bound RNA-dependent RNA polymerase, enables on-demand helicase activity on the relevant polynucleotide substrate during viral replication.


2020 ◽  
Vol 21 (11) ◽  
pp. 4142
Author(s):  
Aleksandra Kaczorowska ◽  
Weronika Lamperska ◽  
Kaja Frączkowska ◽  
Jan Masajada ◽  
Sławomir Drobczyński ◽  
...  

In our study, we describe the outcomes of the intercalation of different anthracycline antibiotics in double-stranded DNA at the nanoscale and single molecule level. Atomic force microscopy analysis revealed that intercalation results in significant elongation and thinning of dsDNA molecules. Additionally, using optical tweezers, we have shown that intercalation decreases the stiffness of DNA molecules, that results in greater susceptibility of dsDNA to break. Using DNA molecules with different GC/AT ratios, we checked whether anthracycline antibiotics show preference for GC-rich or AT-rich DNA fragments. We found that elongation, decrease in height and decrease in stiffness of dsDNA molecules was highest in GC-rich dsDNA, suggesting the preference of anthracycline antibiotics for GC pairs and GC-rich regions of DNA. This is important because such regions of genomes are enriched in DNA regulatory elements. By using three different anthracycline antibiotics, namely doxorubicin (DOX), epirubicin (EPI) and daunorubicin (DAU), we could compare their detrimental effects on DNA. Despite their analogical structure, anthracyclines differ in their effects on DNA molecules and GC-rich region preference. DOX had the strongest overall effect on the DNA topology, causing the largest elongation and decrease in height. On the other hand, EPI has the lowest preference for GC-rich dsDNA. Moreover, we demonstrated that the nanoscale perturbations in dsDNA topology are reflected by changes in the microscale properties of the cell, as even short exposition to doxorubicin resulted in an increase in nuclei stiffness, which can be due to aberration of the chromatin organization, upon intercalation of doxorubicin molecules.


2012 ◽  
Vol 26 (13) ◽  
pp. 1230006 ◽  
Author(s):  
WEI-HUNG CHEN ◽  
JONATHAN D. WILSON ◽  
SITHARA S. WIJERATNE ◽  
SARAH A. SOUTHMAYD ◽  
KUAN-JIUH LIN ◽  
...  

Recent advances in nanoscale manipulation and piconewton force detection provide a unique tool for studying the mechanical and thermodynamic properties of biological molecules and complexes at the single-molecule level. Detailed equilibrium and dynamics information on proteins and DNA have been revealed by single-molecule manipulation and force detection techniques. The atomic force microscope (AFM) and optical tweezers have been widely used to quantify the intra- and inter-molecular interactions of many complex biomolecular systems. In this article, we describe the background, analysis, and applications of these novel techniques. Experimental procedures that can serve as a guide for setting up a single-molecule manipulation system using the AFM are also presented.


Pteridines ◽  
2001 ◽  
Vol 12 (4) ◽  
pp. 147-153 ◽  
Author(s):  
U. Demel ◽  
Z. Foldes-Papp ◽  
D. Fuchs ◽  
G. P. Tilz

Abstract In the present investigation, fluorescence con-elation spectroscopy (FCS) was used to measure the molecular motion of the pteridine derivative neopterin. However, technical limitations in the present optical setup precluded the identification of ,single neopterin molecules. FCS measurements with a fluorophore were also can-ied out for comparison. Exemplified by rhodamine green, we have introduced a concept that allows the detection, identification and analysis of assays in solution at the single-molecule level in tenns of bulk concentration. This concept is based on FCS and Poisson distribution analysis of assay sensitivity. The molecules had not to be quantified in a more concentrated fonn, or in flow and trapping experiments. The study demonstrated an ultrasensitive, reliable, rapid and direct tool for analytics and diagnostics in solution. We discuss a possible application of our new concept in activation control of cell-mediated immunity via neopterin determination.


Sign in / Sign up

Export Citation Format

Share Document