scholarly journals KCNE1 Separates the Main Voltage Sensor Movement and Channel Opening in KCNQ1/KCNE1 Channels

2014 ◽  
Vol 106 (2) ◽  
pp. 142a
Author(s):  
Rene Barro-Soria ◽  
Santiago Rebolledo ◽  
Sara I. Liin ◽  
Marta E. Perez ◽  
Kevin Sampson ◽  
...  
2017 ◽  
Vol 149 (8) ◽  
pp. 781-798 ◽  
Author(s):  
Emely Thompson ◽  
Jodene Eldstrom ◽  
Maartje Westhoff ◽  
Donald McAfee ◽  
Elise Balse ◽  
...  

The delayed potassium rectifier current, IKs, is composed of KCNQ1 and KCNE1 subunits and plays an important role in cardiac action potential repolarization. During β-adrenergic stimulation, 3′-5′-cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) phosphorylates KCNQ1, producing an increase in IKs current and a shortening of the action potential. Here, using cell-attached macropatches and single-channel recordings, we investigate the microscopic mechanisms underlying the cAMP-dependent increase in IKs current. A membrane-permeable cAMP analog, 8-(4-chlorophenylthio)-cAMP (8-CPT-cAMP), causes a marked leftward shift of the conductance–voltage relation in macropatches, with or without an increase in current size. Single channels exhibit fewer silent sweeps, reduced first latency to opening (control, 1.61 ± 0.13 s; cAMP, 1.06 ± 0.11 s), and increased higher-subconductance-level occupancy in the presence of cAMP. The E160R/R237E and S209F KCNQ1 mutants, which show fixed and enhanced voltage sensor activation, respectively, largely abolish the effect of cAMP. The phosphomimetic KCNQ1 mutations, S27D and S27D/S92D, are much less and not at all responsive, respectively, to the effects of PKA phosphorylation (first latency of S27D + KCNE1 channels: control, 1.81 ± 0.1 s; 8-CPT-cAMP, 1.44 ± 0.1 s, P < 0.05; latency of S27D/S92D + KCNE1: control, 1.62 ± 0.1 s; cAMP, 1.43 ± 0.1 s, nonsignificant). Using total internal reflection fluorescence microscopy, we find no overall increase in surface expression of the channel during exposure to 8-CPT-cAMP. Our data suggest that the cAMP-dependent increase in IKs current is caused by an increase in the likelihood of channel opening, combined with faster openings and greater occupancy of higher subconductance levels, and is mediated by enhanced voltage sensor activation.


1999 ◽  
Vol 113 (1) ◽  
pp. 139-151 ◽  
Author(s):  
Hongxia Bao ◽  
Atiya Hakeem ◽  
Mark Henteleff ◽  
John G. Starkus ◽  
Martin D. Rayner

Shaker channel mutants, in which the first (R362), second (R365), and fourth (R371) basic residues in the S4 segment have been neutralized, are found to pass potassium currents with voltage-insensitive kinetics when expressed in Xenopus oocytes. Single channel recordings clarify that these channels continue to open and close from −160 to +80 mV with a constant opening probability (Po). Although Po is low (∼0.15) in these mutants, mean open time is voltage independent and similar to that of control Shaker channels. Additionally, these mutant channels retain characteristic Shaker channel selectivity, sensitivity to block by 4-aminopyridine, and are partially blocked by external Ca2+ ions at very negative potentials. Furthermore, mean open time is approximately doubled, in both mutant channels and control Shaker channels, when Rb+ is substituted for K+ as the permeant ion species. Such strong similarities between mutant channels and control Shaker channels suggests that the pore region has not been substantially altered by the S4 charge neutralizations. We conclude that single channel kinetics in these mutants may indicate how Shaker channels would behave in the absence of voltage sensor input. Thus, mean open times appear primarily determined by voltage-insensitive transitions close to the open state rather than by voltage sensor movement, even in control, voltage-sensitive Shaker channels. By contrast, the low and voltage-insensitive Po seen in these mutant channels suggests that important determinants of normal channel opening derive from electrostatic coupling between S4 charges and the pore domain.


2011 ◽  
Vol 100 (3) ◽  
pp. 582a
Author(s):  
Ren-Shiang Chen ◽  
Yanyan Geng ◽  
Karl L. Magleby

2013 ◽  
Vol 142 (2) ◽  
pp. 101-112 ◽  
Author(s):  
Deborah L. Capes ◽  
Marcel P. Goldschen-Ohm ◽  
Manoel Arcisio-Miranda ◽  
Francisco Bezanilla ◽  
Baron Chanda

Voltage-gated sodium channels are critical for the generation and propagation of electrical signals in most excitable cells. Activation of Na+ channels initiates an action potential, and fast inactivation facilitates repolarization of the membrane by the outward K+ current. Fast inactivation is also the main determinant of the refractory period between successive electrical impulses. Although the voltage sensor of domain IV (DIV) has been implicated in fast inactivation, it remains unclear whether the activation of DIV alone is sufficient for fast inactivation to occur. Here, we functionally neutralize each specific voltage sensor by mutating several critical arginines in the S4 segment to glutamines. We assess the individual role of each voltage-sensing domain in the voltage dependence and kinetics of fast inactivation upon its specific inhibition. We show that movement of the DIV voltage sensor is the rate-limiting step for both development and recovery from fast inactivation. Our data suggest that activation of the DIV voltage sensor alone is sufficient for fast inactivation to occur, and that activation of DIV before channel opening is the molecular mechanism for closed-state inactivation. We propose a kinetic model of sodium channel gating that can account for our major findings over a wide voltage range by postulating that DIV movement is both necessary and sufficient for fast inactivation.


2012 ◽  
Vol 139 (4) ◽  
pp. 305-319 ◽  
Author(s):  
Enrico Leipold ◽  
Adolfo Borges ◽  
Stefan H. Heinemann

Scorpion β toxins, peptides of ∼70 residues, specifically target voltage-gated sodium (NaV) channels to cause use-dependent subthreshold channel openings via a voltage–sensor trapping mechanism. This excitatory action is often overlaid by a not yet understood depressant mode in which NaV channel activity is inhibited. Here, we analyzed these two modes of gating modification by β-toxin Tz1 from Tityus zulianus on heterologously expressed NaV1.4 and NaV1.5 channels using the whole cell patch-clamp method. Tz1 facilitated the opening of NaV1.4 in a use-dependent manner and inhibited channel opening with a reversed use dependence. In contrast, the opening of NaV1.5 was exclusively inhibited without noticeable use dependence. Using chimeras of NaV1.4 and NaV1.5 channels, we demonstrated that gating modification by Tz1 depends on the specific structure of the voltage sensor in domain 2. Although residue G658 in NaV1.4 promotes the use-dependent transitions between Tz1 modification phenotypes, the equivalent residue in NaV1.5, N803, abolishes them. Gating charge neutralizations in the NaV1.4 domain 2 voltage sensor identified arginine residues at positions 663 and 669 as crucial for the outward and inward movement of this sensor, respectively. Our data support a model in which Tz1 can stabilize two conformations of the domain 2 voltage sensor: a preactivated outward position leading to NaV channels that open at subthreshold potentials, and a deactivated inward position preventing channels from opening. The results are best explained by a two-state voltage–sensor trapping model in that bound scorpion β toxin slows the activation as well as the deactivation kinetics of the voltage sensor in domain 2.


2014 ◽  
Vol 145 (1) ◽  
pp. 61-74 ◽  
Author(s):  
Willy Carrasquel-Ursulaez ◽  
Gustavo F. Contreras ◽  
Romina V. Sepúlveda ◽  
Daniel Aguayo ◽  
Fernando González-Nilo ◽  
...  

Large-conductance Ca2+- and voltage-activated K+ channel (BK) open probability is enhanced by depolarization, increasing Ca2+ concentration, or both. These stimuli activate modular voltage and Ca2+ sensors that are allosterically coupled to channel gating. Here, we report a point mutation of a phenylalanine (F380A) in the S6 transmembrane helix that, in the absence of internal Ca2+, profoundly hinders channel opening while showing only minor effects on the voltage sensor active–resting equilibrium. Interpretation of these results using an allosteric model suggests that the F380A mutation greatly increases the free energy difference between open and closed states and uncouples Ca2+ binding from voltage sensor activation and voltage sensor activation from channel opening. However, the presence of a bulky and more hydrophobic amino acid in the F380 position (F380W) increases the intrinsic open–closed equilibrium, weakening the coupling between both sensors with the pore domain. Based on these functional experiments and molecular dynamics simulations, we propose that F380 interacts with another S6 hydrophobic residue (L377) in contiguous subunits. This pair forms a hydrophobic ring important in determining the open–closed equilibrium and, like an integration node, participates in the communication between sensors and between the sensors and pore. Moreover, because of its effects on open probabilities, the F380A mutant can be used for detailed voltage sensor experiments in the presence of permeant cations.


2005 ◽  
Vol 126 (1) ◽  
pp. 7-21 ◽  
Author(s):  
Frank T. Horrigan ◽  
Stefan H. Heinemann ◽  
Toshinori Hoshi

Large conductance calcium-dependent (Slo1 BK) channels are allosterically activated by membrane depolarization and divalent cations, and possess a rich modulatory repertoire. Recently, intracellular heme has been identified as a potent regulator of Slo1 BK channels (Tang, X.D., R. Xu, M.F. Reynolds, M.L. Garcia, S.H. Heinemann, and T. Hoshi. 2003. Nature. 425:531–535). Here we investigated the mechanism of the regulatory action of heme on heterologously expressed Slo1 BK channels by separating the influences of voltage and divalent cations. In the absence of divalent cations, heme generally decreased ionic currents by shifting the channel's G–V curve toward more depolarized voltages and by rendering the curve less steep. In contrast, gating currents remained largely unaffected by heme. Simulations suggest that a decrease in the strength of allosteric coupling between the voltage sensor and the activation gate and a concomitant stabilization of the open state account for the essential features of the heme action in the absence of divalent ions. At saturating levels of divalent cations, heme remained similarly effective with its influence on the G–V simulated by weakening the coupling of both Ca2+ binding and voltage sensor activation to channel opening. The results thus show that heme dampens the influence of allosteric activators on the activation gate of the Slo1 BK channel. To account for these effects, we consider the possibility that heme binding alters the structure of the RCK gating ring and thereby disrupts both Ca2+- and voltage-dependent gating as well as intrinsic stability of the open state.


2011 ◽  
Vol 100 (3) ◽  
pp. 428a
Author(s):  
Carlos A. Villalba-Galea ◽  
Junghoon Ha ◽  
I. Scott Ramsey

2018 ◽  
Vol 151 (2) ◽  
pp. 247-257 ◽  
Author(s):  
Rene Barro-Soria

One of the major factors known to cause neuronal hyperexcitability is malfunction of the potassium channels formed by KCNQ2 and KCNQ3. These channel subunits underlie the M current, which regulates neuronal excitability. Here, I investigate the molecular mechanisms by which epilepsy-associated mutations in the voltage sensor (S4) of KCNQ3 cause channel malfunction. Voltage clamp fluorometry reveals that the R230C mutation in KCNQ3 allows S4 movement but shifts the open/closed transition of the gate to very negative potentials. This results in the mutated channel remaining open throughout the physiological voltage range. Substitution of R230 with natural and unnatural amino acids indicates that the functional effect of the arginine residue at position 230 depends on both its positive charge and the size of its side chain. I find that KCNQ3-R230C is hard to close, but it is capable of being closed at strong negative voltages. I suggest that compounds that shift the voltage dependence of S4 activation to more positive potentials would promote gate closure and thus have therapeutic potential.


2006 ◽  
Vol 127 (4) ◽  
pp. 449-465 ◽  
Author(s):  
Bin Wang ◽  
Brad S. Rothberg ◽  
Robert Brenner

Large-conductance (BK-type) Ca2+-activated potassium channels are activated by membrane depolarization and cytoplasmic Ca2+. BK channels are expressed in a broad variety of cells and have a corresponding diversity in properties. Underlying much of the functional diversity is a family of four tissue-specific accessory subunits (β1–β4). Biophysical characterization has shown that the β4 subunit confers properties of the so-called “type II” BK channel isotypes seen in brain. These properties include slow gating kinetics and resistance to iberiotoxin and charybdotoxin blockade. In addition, the β4 subunit reduces the apparent voltage sensitivity of channel activation and has complex effects on apparent Ca2+ sensitivity. Specifically, channel activity at low Ca2+ is inhibited, while at high Ca2+, activity is enhanced. The goal of this study is to understand the mechanism underlying β4 subunit action in the context of a dual allosteric model for BK channel gating. We observed that β4's most profound effect is a decrease in Po (at least 11-fold) in the absence of calcium binding and voltage sensor activation. However, β4 promotes channel opening by increasing voltage dependence of Po-V relations at negative membrane potentials. In the context of the dual allosteric model for BK channels, we find these properties are explained by distinct and opposing actions of β4 on BK channels. β4 reduces channel opening by decreasing the intrinsic gating equilibrium (L0), and decreasing the allosteric coupling between calcium binding and voltage sensor activation (E). However, β4 has a compensatory effect on channel opening following depolarization by shifting open channel voltage sensor activation (Vho) to more negative membrane potentials. The consequence is that β4 causes a net positive shift of the G-V relationship (relative to α subunit alone) at low calcium. At higher calcium, the contribution by Vho and an increase in allosteric coupling to Ca2+ binding (C) promotes a negative G-V shift of α+β4 channels as compared to α subunits alone. This manner of modulation predicts that type II BK channels are downregulated by β4 at resting voltages through effects on L0. However, β4 confers a compensatory effect on voltage sensor activation that increases channel opening during depolarization.


Sign in / Sign up

Export Citation Format

Share Document