scholarly journals Calcium Effect on Directed Lipid Flow in Membrane: Improving Knowledge about Directed Cell Processes in Biological Cells

2015 ◽  
Vol 108 (2) ◽  
pp. 401a
Author(s):  
Baharan Ali Doosti
Author(s):  
K.R. Porter

Most types of cells are known from their structure and overall form to possess a characteristic organization. In some instances this is evident in the non-random disposition of organelles and such system subunits as cisternae of the endoplasmic reticulum or the Golgi complex. In others it appears in the distribution and orientation of cytoplasmic fibrils. And in yet others the organization finds expression in the non-random distribution and orientation of microtubules, especially as found in highly anisometric cells and cell processes. The impression is unavoidable that in none of these cases is the organization achieved without the involvement of the cytoplasmic ground substance (CGS) or matrix. This impression is based on the fact that a matrix is present and that in all instances these formed structures, whether membranelimited or filamentous, are suspended in it. In some well-known instances, as in arrays of microtubules which make up axonemes and axostyles, the matrix resolves itself into bridges (and spokes) between the microtubules, bridges which are in some cases very regularly disposed and uniform in size (Mcintosh, 1973; Bloodgood and Miller, 1974; Warner and Satir, 1974).


Author(s):  
Wiktor Djaczenko ◽  
Carmen Calenda Cimmino

The simplicity of the developing nervous system of oligochaetes makes of it an excellent model for the study of the relationships between glia and neurons. In the present communication we describe the relationships between glia and neurons in the early periods of post-embryonic development in some species of oligochaetes.Tubifex tubifex (Mull. ) and Octolasium complanatum (Dugès) specimens starting from 0. 3 mm of body length were collected from laboratory cultures divided into three groups each group fixed separately by one of the following methods: (a) 4% glutaraldehyde and 1% acrolein fixation followed by osmium tetroxide, (b) TAPO technique, (c) ruthenium red method.Our observations concern the early period of the postembryonic development of the nervous system in oligochaetes. During this period neurons occupy fixed positions in the body the only observable change being the increase in volume of their perikaryons. Perikaryons of glial cells were located at some distance from neurons. Long cytoplasmic processes of glial cells tended to approach the neurons. The superimposed contours of glial cell processes designed from electron micrographs, taken at the same magnification, typical for five successive growth stages of the nervous system of Octolasium complanatum are shown in Fig. 1. Neuron is designed symbolically to facilitate the understanding of the kinetics of the growth process.


Author(s):  
Raoul Fresco ◽  
Mary Chang-Lo

Confusion surrounds the nature of the “adenomatoid tumor” of the testis, as evidenced by the large number of synonyms which have been ascribed to it. Various authors have considered the tumor to be of endothelial, mesothelial or epithelial origin. There appears to be no controversy as to the stromal elements of the tumor, which consists mainly of smooth muscle and fibrous tissue. It is the irregular gland-like spaces which have given rise to the numerous theories as to its histogenesis, and even recent ultrastructural studies fail to agree on the origin of these structures.Electron microscopy of a typical intrascrotal adenomatoid tumor showed the gland-like spaces to be lined by epithelial cells (Fig. 1), rich in cytoplasmic tonofibrils and united to each other by numerous desmosomes (Fig. 2). The most salient feature of these epithelial cells was the presence on their luminal surface of numerous long and repeatedly branching microvillous structures of the type known as stereocilia (Fig. 3). These are extremely long slender cell processes which are as much as three to four times the length of those in brush borders.


Author(s):  
M. W. Brightman

The cytological evidence for pinocytosis is the focal infolding of the cell membrane to form surface pits that eventually pinch off and move into the cytoplasm. This activity, which can be inhibited by oxidative and glycolytic poisons, is performed only by cell processes that are at least 300A wide. However, the interpretation of such toxic effects becomes equivocal if the membrane invaginations do not normally lead to the formation of migratory vesicles, as in some endothelia and in smooth muscle. The present study is an attempt to set forth some conditions under which pinocytosis, as distinct from the mere inclusion of material in surface invaginations, can take place.


PIERS Online ◽  
2009 ◽  
Vol 5 (3) ◽  
pp. 251-255 ◽  
Author(s):  
Hsin-Hung Li ◽  
Jen-Yu Jao ◽  
Ming-Kun Chen ◽  
Ling-Sheng Jang ◽  
Yi-Chu Hsu

2019 ◽  
Vol 73 (8) ◽  
pp. 893-901
Author(s):  
Sinead J. Barton ◽  
Bryan M. Hennelly

Cosmic ray artifacts may be present in all photo-electric readout systems. In spectroscopy, they present as random unidirectional sharp spikes that distort spectra and may have an affect on post-processing, possibly affecting the results of multivariate statistical classification. A number of methods have previously been proposed to remove cosmic ray artifacts from spectra but the goal of removing the artifacts while making no other change to the underlying spectrum is challenging. One of the most successful and commonly applied methods for the removal of comic ray artifacts involves the capture of two sequential spectra that are compared in order to identify spikes. The disadvantage of this approach is that at least two recordings are necessary, which may be problematic for dynamically changing spectra, and which can reduce the signal-to-noise (S/N) ratio when compared with a single recording of equivalent duration due to the inclusion of two instances of read noise. In this paper, a cosmic ray artefact removal algorithm is proposed that works in a similar way to the double acquisition method but requires only a single capture, so long as a data set of similar spectra is available. The method employs normalized covariance in order to identify a similar spectrum in the data set, from which a direct comparison reveals the presence of cosmic ray artifacts, which are then replaced with the corresponding values from the matching spectrum. The advantage of the proposed method over the double acquisition method is investigated in the context of the S/N ratio and is applied to various data sets of Raman spectra recorded from biological cells.


2020 ◽  
Vol 32 (3) ◽  
pp. 463-466 ◽  
Author(s):  
Arno Wünschmann ◽  
Robert Lopez-Astacio ◽  
Anibal G. Armien ◽  
Colin R. Parrish

A juvenile raccoon ( Procyon lotor) was submitted dead to the Minnesota Veterinary Diagnostic Laboratory for rabies testing without history. The animal had marked hypoplasia of the cerebellum. Histology demonstrated that most folia lacked granule cells and had randomly misplaced Purkinje cells. Immunohistochemistry revealed the presence of parvoviral antigen in a few neurons and cell processes. PCR targeting feline and canine parvovirus yielded a positive signal. Sequencing analyses from a fragment of the nonstructural protein 1 ( NS1) gene and a portion of the viral capsid protein 2 ( VP2) gene confirmed the presence of DNA of a recent canine parvovirus variant (CPV-2a–like virus) in the cerebellum. Our study provides evidence that (canine) parvovirus may be associated with cerebellar hypoplasia and dysplasia in raccoons, similar to the disease that occurs naturally and has been reproduced experimentally by feline parvoviral infection of pregnant cats, with subsequent intrauterine or neonatal infections of the offspring.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Sergio Gabarre ◽  
Frank Vernaillen ◽  
Pieter Baatsen ◽  
Katlijn Vints ◽  
Christopher Cawthorne ◽  
...  

Abstract Background Array tomography (AT) is a high-resolution imaging method to resolve fine details at the organelle level and has the advantage that it can provide 3D volumes to show the tissue context. AT can be carried out in a correlative way, combing light and electron microscopy (LM, EM) techniques. However, the correlation between modalities can be a challenge and delineating specific regions of interest in consecutive sections can be time-consuming. Integrated light and electron microscopes (iLEMs) offer the possibility to provide well-correlated images and may pose an ideal solution for correlative AT. Here, we report a workflow to automate navigation between regions of interest. Results We use a targeted approach that allows imaging specific tissue features, like organelles, cell processes, and nuclei at different scales to enable fast, directly correlated in situ AT using an integrated light and electron microscope (iLEM-AT). Our workflow is based on the detection of section boundaries on an initial transmitted light acquisition that serves as a reference space to compensate for changes in shape between sections, and we apply a stepwise refinement of localizations as the magnification increases from LM to EM. With minimal user interaction, this enables autonomous and speedy acquisition of regions containing cells and cellular organelles of interest correlated across different magnifications for LM and EM modalities, providing a more efficient way to obtain 3D images. We provide a proof of concept of our approach and the developed software tools using both Golgi neuronal impregnation staining and fluorescently labeled protein condensates in cells. Conclusions Our method facilitates tracing and reconstructing cellular structures over multiple sections, is targeted at high resolution ILEMs, and can be integrated into existing devices, both commercial and custom-built systems.


Sign in / Sign up

Export Citation Format

Share Document