Intrathecal administration of triptolide, a T lymphocyte inhibitor, attenuates chronic constriction injury-induced neuropathic pain in rats

2012 ◽  
Vol 1436 ◽  
pp. 122-129 ◽  
Author(s):  
Jin-Yu Hu ◽  
Chang-Lin Li ◽  
Ying-Wei Wang
2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Ming Liu ◽  
Kaijun Liao ◽  
Changxi Yu ◽  
Xuejun Li ◽  
Suhuan Liu ◽  
...  

Neuropathic pain responds poorly to drug treatments, and partial relief is achieved in only about half of the patients. Puerarin, the main constituent ofPuerariae Lobatae Radix, has been used extensively in China to treat hypertension and tumor. The current study examined the effects of puerarin on neuropathic pain using two most commonly used animal models: chronic constriction injury (CCI) and diabetic neuropathy. We found that consecutive intrathecal administration of puerarin (4–100 nM) for 7 days inhibited the mechanical and thermal nociceptive response induced by CCI and diabetes without interfering with the normal pain response. Meanwhile, in both models puerarin inhibited the activation of microglia and astroglia in the spinal dorsal horn. Puerarin also reduced the upregulated levels of nuclear factor-κB (NF-κB) and other proinflammatory cytokines, such as IL-6, IL-1β, and TNF-α, in the spinal cord. In summary, puerarin alleviated CCI- and diabetes-induced neuropathic pain, and its effectiveness might be due to the inhibition of neuroinflammation in the spinal cord. The anti-inflammation effect of puerarin might be related to the suppression of spinal NF-κB activation and/or cytokines upregulation. We conclude that puerarin has a significant effect on alleviating neuropathic pain and thus may serve as a therapeutic approach for neuropathic pain.


2021 ◽  
Vol 22 (4) ◽  
pp. 1891
Author(s):  
Ching Chang ◽  
Hung-Kai Liu ◽  
Chao-Bin Yeh ◽  
Ming-Lin Yang ◽  
Wen-Chieh Liao ◽  
...  

Recently, Toll-like receptors (TLRs), a family of pattern recognition receptors, are reported as potential modulators for neuropathic pain; however, the desired mechanism is still unexplained. Here, we operated on the sciatic nerve to establish a pre-clinical rodent model of chronic constriction injury (CCI) in Sprague-Dawley rats, which were assigned into CCI and Decompression groups randomly. In Decompression group, the rats were performed with nerve decompression at post-operative week 4. Mechanical hyperalgesia and mechanical allodynia were obviously attenuated after a month. Toll-like receptor 5 (TLR5)-immunoreactive (ir) expression increased in dorsal horn, particularly in the inner part of lamina II. Additionally, substance P (SP) and isolectin B4 (IB4)-ir expressions, rather than calcitonin-gene-related peptide (CGRP)-ir expression, increased in their distinct laminae. Double immunofluorescence proved that increased TLR5-ir expression was co-expressed mainly with IB4-ir expression. Through an intrathecal administration with FLA-ST Ultrapure (a TLR5 agonist, purified flagellin from Salmonella Typhimurium, only the CCI-induced mechanical hyperalgesia was attenuated dose-dependently. Moreover, we confirmed that mu-opioid receptor (MOR) and phospho-protein kinase Cα (pPKCα)-ir expressions but not phospho-protein kinase A RII (pPKA RII)-ir expression, increased in lamina II, where they mostly co-expressed with IB4-ir expression. Go 6976, a potent protein kinase C inhibitor, effectively reversed the FLA-ST Ultrapure- or DAMGO-mediated attenuated trend towards mechanical hyperalgesia by an intrathecal administration in CCI rats. In summary, our current findings suggest that nerve decompression improves CCI-induced mechanical hyperalgesia that might be through the cross-talk of TLR5 and MOR in a PKCα-dependent manner, which opens a novel opportunity for the development of analgesic therapeutics in neuropathic pain.


Author(s):  
Yedy Purwandi Sukmawan ◽  
Kusnandar Anggadiredja ◽  
I Ketut Adnyana

Background: Neuropathic pain is one of the contributors to the global burdens of illness. At present many patients do not achieve satisfactory pain relief even with synthetic pain-killers. Taking this into consideration, it is necessary to search for natural product-derived alternative treatment with confirmed safety and efficacy. Ageratum conyzoides L is a plant often used as analgesic in Indonesia, however, anti-neuropathic pain activity of this plant is still unknown. Objective: To determine the anti-neuropathic pain activity of the essential oil and non-essential oil component (distillation residue) of A. conyzoides L. Methods: We conducted separation of the essential oil component from other secondary metabolites through steam distillation. Both components were tested for anti-neuropathic pain activity using chronic constriction injury animal models with thermal hyperalgesia and allodynia tests. The animals were divided into 7 test groups namely normal, sham, negative, positive (pregabalin at 0.195 mg/20 g BW of mice), essential oil component (100 mg/kg BW), and non-essential oil component (100 mg/kg BW). Naloxone was tested against the most potent anti-neuropathic pain component (essential oil or nonessential oil) to investigate the involvement of opioid receptor. Results: The GC-MS of the essential oil component indicated the presence of 60 compounds. Meanwhile, non-essential oil components contained alkaloid, flavonoid, polyphenol, quinone, steroid, and triterpenoid. This non-essential oil component contained a total flavonoid equivalent to 248.89 ppm quercetin. The anti-neuropathic pain activity test showed significantly higher activity of the essential oil component compared to the non-essential oil component and negative groups (p<0.05). Furthermore, the essential oil component showed equal activity to pregabalin (p>0.05). However, this activity was abolished by naloxone, indicating the involvement of opioid receptor in the action of the essential oil component. Conclusion: The essential oil component of A. conyzoides L is a potential novel substance for use as anti-neuropathic pain.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Prasad Neerati ◽  
Harika Prathapagiri

Abstract Background Chronic neuropathic pain syndrome is associated with impaired quality of life and is poorly manageable. Alpha lipoic acid (ALA) is a powerful antioxidant and showed its effectiveness on diabetic neuropathy and other acute peripheral nerve injuries but it was not evaluated in the chronic neuropathic pain, chronic constriction injury (CCI) in rat model by using duloxetine (DLX) as standard. Methodology The main objective of the study was to expedite ALA effect on chronic peripheral neuropathy induced by CCI of sciatic nerve in rats. In this study, male Wister rats were randomly divided into six groups (n = 8) including, normal saline, sham operated, surgery control, DLX 30mg/kg treated, ALA treated 25mg/kg, and ALA+DLX. The CCI of sciatic nerve was conducted on all animals except normal saline group and studied for 21 days (i.e. 14 days treatment period & 7 days treatment free period) by using different behavioral, biochemical and, histopathology studies. Results ALA showed minor but significant decrease of thermal hyperalgesia, cold allodynia, malondialdehyde (MDA), total protein, lipid peroxidation, and nitric oxide levels and significant increase of motor coordination, glutathione level and decreased axonal degeneration significantly. These effects sustained even during treatment free period. ALA enhanced the effect of DLX when given in combination by showing sustained effect. In conclusion, ALA acted as potent antioxidant may be this activity is responsible for the potent neuroprotective effect. Conclusion Hence, ALA attenuated the nueroinflammation mediated by chronic peripheral neuropathy. Further studies are warranted with ALA to develop as a clinically relevant therapeutic agent for the treatment of neuropathic pain.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 434
Author(s):  
Tomohiro Yamashita ◽  
Sawako Kamikaseda ◽  
Aya Tanaka ◽  
Hidetoshi Tozaki-Saitoh ◽  
Jose M. M. Caaveiro ◽  
...  

P2X7 receptors (P2X7Rs) belong to a family of ATP-gated non-selective cation channels. Microglia represent a major cell type expressing P2X7Rs. The activation of microglial P2X7Rs causes the release of pro-inflammatory cytokines such as interleukin-1β (IL-1β). This response has been implicated in neuroinflammatory states in the central nervous system and in various diseases, including neuropathic pain. Thus, P2X7R may represent a potential therapeutic target. In the present study, we screened a chemical library of clinically approved drugs (1979 compounds) by high-throughput screening and showed that the Ca2+ channel blocker cilnidipine has an inhibitory effect on rodent and human P2X7R. In primary cultured rat microglial cells, cilnidipine inhibited P2X7R-mediated Ca2+ responses and IL-1β release. Moreover, in a rat model of neuropathic pain, the intrathecal administration of cilnidipine produced a reversal of nerve injury-induced mechanical hypersensitivity, a cardinal symptom of neuropathic pain. These results point to a new inhibitory effect of cilnidipine on microglial P2X7R-mediated inflammatory responses and neuropathic pain, proposing its therapeutic potential.


Sign in / Sign up

Export Citation Format

Share Document