scholarly journals The role of NR4A transcription factors in memory formation

2011 ◽  
Vol 85 (1-2) ◽  
pp. 21-29 ◽  
Author(s):  
Josh D. Hawk ◽  
Ted Abel
1995 ◽  
Vol 42 (2) ◽  
pp. 221-226 ◽  
Author(s):  
L Kaczmarek

Recent advances in application of molecular biology to studies on learning and memory formation suggest that understanding of these seemingly elusive phenomena may be within our reach. This mini-review summarizes the present knowledge on activation and possible functions of transcription factors in learning processes with a focus on studies performed in the author's laboratory.


Pneumologie ◽  
2012 ◽  
Vol 66 (06) ◽  
Author(s):  
HM Al-Tamari ◽  
M Eschenhagen ◽  
A Schmall ◽  
R Savai ◽  
HA Ghofrani ◽  
...  

MicroRNA ◽  
2020 ◽  
Vol 09 ◽  
Author(s):  
Sadniman Rahman ◽  
Chaity Modak ◽  
Mousumi Akter ◽  
Mohammad Shamimul Alam

Background: Learning and memory is basic aspects in neurogenetics as most of the neurological disorders start with dementia or memory loss. Several genes associated with memory formation have been discovered. MicroRNA genes miR-1000 and miR-375 were reported to be associated with neural integration and glucose homeostasis in some insects and vertebrates. However, neuronal function of these genes is yet to be established in D. melanogaster. Objective: Possible role of miR-1000 and miR-375 in learning and memory formation in this fly has been explored in the present study. Methods: Both appetitive and aversive olfactory conditional learning were tested in the miR-1000 and miR-375 knockout (KO) strains and compared with wild one. Five days old third instar larvae were trained by allowing them to be associated with an odor with reward (fructose) or punishment (salt). Then, the larvae were tested to calculate their preferences to the odor trained with. Learning index (LI) values and larval locomotion speed were calculated for all strains. Results: No significant difference was observed for larval locomotion speed in mutant strains. Knockout strain of miR-1000 showed significant deficiency in both appetitive and aversive memory formation whereas miR-375 KO strain showed a significantly lower response only in appetitive one. Conclusion: The results of the present study indicate important role played by these two genes in forming short-term memory in D. melanogaster.


Sign in / Sign up

Export Citation Format

Share Document