Role of n-kb transcription factors, cell-cycle regulators and apoptotic genes in proliferation of MCF-7 cells

Author(s):  
SHUBHA M. HEGDE ◽  
NAVEEN KUMAR M ◽  
K. MANJU NATH ◽  
S. CHIDANANDA SHARMA
Planta Medica ◽  
2018 ◽  
Vol 84 (11) ◽  
pp. 786-794
Author(s):  
Weiyun Chai ◽  
Lu Chen ◽  
Xiao-Yuan Lian ◽  
Zhizhen Zhang

AbstractTripolinolate A as a new bioactive phenolic ester was previously isolated from a halophyte of Tripolium pannonicum. However, the in vitro and in vivo anti-glioma effects and mechanism of tripolinolate A have not been investigated. This study has demonstrated that (1) tripolinolate A inhibited the proliferation of different glioma cells with IC50 values of 7.97 to 14.02 µM and had a significant inhibitory effect on the glioma growth in U87MG xenograft nude mice, (2) tripolinolate A induced apoptosis in glioma cells by downregulating the expressions of antiapoptotic proteins and arrested glioma cell cycle at the G2/M phase by reducing the expression levels of cell cycle regulators, and (3) tripolinolate A also remarkably reduced the expression levels of several glioma metabolic enzymes and transcription factors. All data together suggested that tripolinolate A had significant in vitro and in vivo anti-glioma effects and the regulation of multiple tumor-related regulators and transcription factors might be responsible for the activities of tripolinolate A against glioma.


2007 ◽  
Vol 7 (1) ◽  
Author(s):  
Abeer A Bahnassy ◽  
Abdel Rahman N Zekri ◽  
Maha Saleh ◽  
Mohammad Lotayef ◽  
Manar Moneir ◽  
...  

Author(s):  
Tatyana Bodrug ◽  
Kaeli A. Welsh ◽  
Megan Hinkle ◽  
Michael J. Emanuele ◽  
Nicholas G. Brown

The ubiquitin (Ub)-proteasome system is vital to nearly every biological process in eukaryotes. Specifically, the conjugation of Ub to target proteins by Ub ligases, such as the Anaphase-Promoting Complex/Cyclosome (APC/C), is paramount for cell cycle transitions as it leads to the irreversible destruction of cell cycle regulators by the proteasome. Through this activity, the RING Ub ligase APC/C governs mitosis, G1, and numerous aspects of neurobiology. Pioneering cryo-EM, biochemical reconstitution, and cell-based studies have illuminated many aspects of the conformational dynamics of this large, multi-subunit complex and the sophisticated regulation of APC/C function. More recent studies have revealed new mechanisms that selectively dictate APC/C activity and explore additional pathways that are controlled by APC/C-mediated ubiquitination, including an intimate relationship with chromatin regulation. These tasks go beyond the traditional cell cycle role historically ascribed to the APC/C. Here, we review these novel findings, examine the mechanistic implications of APC/C regulation, and discuss the role of the APC/C in previously unappreciated signaling pathways.


Author(s):  
Jiayan Xie ◽  
Yimei Jin ◽  
Guang Wang

AbstractAs the largest family of E3 ligases, the Skp1-cullin 1-F-box (SCF) E3 ligase complex is comprised of Cullins, Skp1 and F-box proteins. And the SCF E3 ubiquitin ligases play an important role in regulating critical cellular processes, which promote degradation of many cellular proteins, including signal transducers, cell cycle regulators, and transcription factors. We review the biological roles of the SCF ubiquitin-ligase complex in gametogenesis, oocyte-to-embryo transition, embryo development and the regulation for estrogen and progestin. We find that researches about the SCF ubiquitin-ligase complex at the beginning of life are not comprehensive, thus more in-depth researches will promote its eventual clinical application.


2020 ◽  
Vol 21 (19) ◽  
pp. 7388
Author(s):  
Federica Zinghirino ◽  
Xena Giada Pappalardo ◽  
Angela Messina ◽  
Francesca Guarino ◽  
Vito De Pinto

VDACs (voltage-dependent anion-selective channels) are pore-forming proteins of the outer mitochondrial membrane, whose permeability is primarily due to VDACs’ presence. In higher eukaryotes, three isoforms are raised during the evolution: they have the same exon–intron organization, and the proteins show the same channel-forming activity. We provide a comprehensive analysis of the three human VDAC genes (VDAC1–3), their expression profiles, promoter activity, and potential transcriptional regulators. VDAC isoforms are broadly but also specifically expressed in various human tissues at different levels, with a predominance of VDAC1 and VDAC2 over VDAC3. However, an RNA-seq cap analysis gene expression (CAGE) approach revealed a higher level of transcription activation of VDAC3 gene. We experimentally confirmed this information by reporter assay of VDACs promoter activity. Transcription factor binding sites (TFBSs) distribution in the promoters were investigated. The main regulators common to the three VDAC genes were identified as E2F-myc activator/cell cycle (E2FF), Nuclear respiratory factor 1 (NRF1), Krueppel-like transcription factors (KLFS), E-box binding factors (EBOX) transcription factor family members. All of them are involved in cell cycle and growth, proliferation, differentiation, apoptosis, and metabolism. More transcription factors specific for each VDAC gene isoform were identified, supporting the results in the literature, indicating a general role of VDAC1, as an actor of apoptosis for VDAC2, and the involvement in sex determination and development of VDAC3. For the first time, we propose a comparative analysis of human VDAC promoters to investigate their specific biological functions. Bioinformatics and experimental results confirm the essential role of the VDAC protein family in mitochondrial functionality. Moreover, insights about a specialized function and different regulation mechanisms arise for the three isoform gene.


Science ◽  
1998 ◽  
Vol 280 (5366) ◽  
pp. 1035-1036 ◽  
Author(s):  
T. Jacks

2013 ◽  
Vol 380 (1-2) ◽  
pp. 143-151 ◽  
Author(s):  
R. L. Babu ◽  
M. Naveen Kumar ◽  
Rajeshwari H. Patil ◽  
K. S. Devaraju ◽  
Govindarajan T. Ramesh ◽  
...  

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 780-780
Author(s):  
Andrew G. Muntean ◽  
Liyan Pang ◽  
Mortimer Poncz ◽  
Steve Dowdy ◽  
Gerd Blobel ◽  
...  

Abstract Megakaryocytes, which fragment to give rise to platelets, undergo a unique form of cell cycle, termed endomitosis, to become polyploid and terminally differentiate. During this process, cells transverse the cell cycle but the late stages of mitosis are bypassed to lead to accumulation of DNA up to 128N. While the mechanisms of polyploidization in megakaryocytes are poorly understood, a few cell cycle regulators, such as cyclin D3, have been implicated in this process. Hematopoietic transcription factors, including GATA-1 and RUNX1 are also essential for polyploidization, as both GATA1-deficient and RUNX1-null megakaryocytes undergo fewer rounds of endomitosis. Interestingly, GATA-1 deficient megakaryocytes are also smaller than their wild-type counterparts. However, the link between transcription factors and the growth and polyploidization of megakaryocytes has not been established. In our studies to identify key downstream targets of GATA-1 in the megakaryocyte lineage, we discovered that the cell cycle regulators cyclin D1 and p16 were aberrantly expressed in the absence of GATA-1: cyclin D1 expression was reduced nearly 10-fold, while that of p16ink4a was increased 10-fold. Luciferase reporter assays revealed that GATA-1, but not the leukemic isoform GATA-1s, promotes cyclinD1 expression. Consistent with these observations, megakaryocytes that express GATA-1s in place of full-length GATA-1 are smaller than their wild-type counterparts. Chromatin immunoprecipitation studies revealed that GATA-1 is bound to the cyclin D1 promoter in vivo, in primary fetal liver derived megakaryocytes. In contrast, GATA-1 is not associated with the cyclin D1 promoter in erythroid cells, which do not become polyploid. Thus, cyclin D1 is a bona fide GATA-1 target gene in megakaryocytes. To investigate whether restoration of cyclin D1 expression could rescue the polyploidization defect in GATA-1 deficient cells, we infected fetal liver progenitors isolated from GATA-1 knock-down mice with retroviruses harboring the cyclin D1 cDNA (and GFP via an IRES element) or GFP alone. Surprisingly, expression of cyclin D1 did not increase the extent of polyploidization of the GATA-1 deficient megakaryocytes. However, co-overexpression of cyclin D1 and Cdk4 resulted in a dramatic increase in polyploidization. Consistent with the model that cyclinD:Cdk4/6 also regulates cellular metabolism, we observed that the size of the doubly infected cells was also significantly increased. Finally, in support of our model that cyclin D:Cdk4/6 kinase activity is essential for endomitosis, we discovered that introduction of wild-type p16 TAT fusion protein, but not a mutant that fails to interact with Cdk4/6, significantly blocked polyploidization of primary fetal liver derived megakaryocytes. Taken together, our data reveal that the process of endomitosis and cell growth relies heavily on cyclinD:Cdk4/6 kinase activity and that the maturation defects in GATA-1 deficient megakaryocytes are due, in part, to reduced Cyclin D1 and increase p16 expression.


Sign in / Sign up

Export Citation Format

Share Document