valvular interstitial cells
Recently Published Documents


TOTAL DOCUMENTS

140
(FIVE YEARS 44)

H-INDEX

24
(FIVE YEARS 4)

Author(s):  
Caroline G. Sanz ◽  
Andreea C. Mihaila ◽  
Alexandru Evanghelidis ◽  
Victor C. Diculescu ◽  
Elena Butoi ◽  
...  

Author(s):  
Qian Zhou ◽  
Hong Cao ◽  
Xiaoyi Hang ◽  
Huamin Liang ◽  
Miaomiao Zhu ◽  
...  

Calcified aortic valve disease (CAVD), the most common valvular heart disease, lacks pharmaceutical treatment options because its pathogenesis remains unclear. This disease with a complex macroenvironment characterizes notable cellular heterogeneity. Therefore, a comprehensive understanding of cellular diversity and cell-to-cell communication are essential for elucidating the mechanisms driving CAVD progression and developing therapeutic targets. In this study, we used single-cell RNA sequencing (scRNA-seq) analysis to describe the comprehensive transcriptomic landscape and cell-to-cell interactions. The transitional valvular endothelial cells (tVECs), an intermediate state during the endothelial-to-mesenchymal transition (EndMT), could be a target to interfere with EndMT progression. Moreover, matrix valvular interstitial cells (mVICs) with high expression of midkine (MDK) interact with activated valvular interstitial cells (aVICs) and compliment-activated valvular interstitial cells (cVICs) through the MK pathway. Then, MDK inhibited calcification of VICs that calcification was validated by Alizarin Red S staining, real-time quantitative polymerase chain reaction (RT-qPCR), and Western blotting assays in vitro. Therefore, we speculated that mVICs secreted MDK to prevent VICs’ calcification. Together, these findings delineate the aortic valve cells’ heterogeneity, underlining the importance of intercellular cross talk and MDK, which may offer a potential therapeutic strategy as a novel inhibitor of CAVD.


2021 ◽  
Vol 11 (18) ◽  
pp. 8332
Author(s):  
Ahmed A. Bakhaty ◽  
Sanjay Govindjee ◽  
Mohammad R. K. Mofrad

Mechano-biological processes in the aortic valve span multiple length scales ranging from the molecular and cell to tissue and organ levels. The valvular interstitial cells residing within the valve cusps sense and actively respond to leaflet tissue deformations caused by the valve opening and closing during the cardiac cycle. Abnormalities in these biomechanical processes are believed to impact the matrix-maintenance function of the valvular interstitial cells, thereby initiating valvular disease processes such as calcific aortic stenosis. Understanding the mechanical behavior of valvular interstitial cells in maintaining tissue homeostasis in response to leaflet tissue deformation is therefore key to understanding the function of the aortic valve in health and disease. In this study, we applied a multiscale computational homogenization technique (also known as “FE2”) to aortic valve leaflet tissue to study the three-dimensional mechanical behavior of the valvular interstitial cells in response to organ-scale mechanical loading. We further considered calcific aortic stenosis with the aim of understanding the likely relationship between the valvular interstitial cell deformations and calcification. We find that the presence of calcified nodules leads to an increased strain profile that drives further growth of calcification.


2021 ◽  
Vol 8 (9) ◽  
pp. 183
Author(s):  
Cristina Vercelli ◽  
Graziana Gambino ◽  
Michela Amadori ◽  
Giovanni Re ◽  
Eugenio Martignani ◽  
...  

Myxomatous mitral valve degeneration (MMVD) is the most common acquired cardiac disease in canine species, and valvular interstitial cells (VICs) are considered the main responsible for the development of this pathology. The scientific interest is focused on isolating and characterizing these cells. The aims of the present study were to verify a novel VICs mechanical isolation method and to characterize isolated cells using immunocytochemistry and immunofluorescence, with parallel histological and immunohistochemistry assays on bovine and canine healthy and MMVD mitral valves. Antibodies against vimentin (VIM), smooth muscle actin (SMA), von Willebrand (vW) factor, Transforming Growth Factor (TGF) β1, and Transient Receptor Potential Vanilloid 1 (TRPV1) were used. The isolation method was considered reliable and able to isolate only VICs. The different assays demonstrated a different expression of SMA in healthy and MMVD mitral valves, and TRPV1 was isolated for the first time from bovine and canine VICs and the correspondent mitral valve leaflets. The novelties of the present study are the new isolation method, that may allow correlations between laboratory and clinical conditions, and the identification of TRPV1, which will lead to further investigations to understand its function and possible role in the etiology of MMVD and to the design of new therapeutic strategies.


2021 ◽  
Vol 8 ◽  
Author(s):  
Victoria Nelson ◽  
Vaidehi Patil ◽  
LaTonya R. Simon ◽  
Kelsey Schmidt ◽  
Chloe M. McCoy ◽  
...  

Angiogenesis is a hallmark of fibrocalcific aortic valve disease (CAVD). An imbalance of pro- and anti-angiogenic factors is thought to play a role in driving this disease process, and valvular interstitial cells (VICs) may act as a significant source of these factors. CAVD is also known to exhibit sexual dimorphism in its presentation, and previous work suggested that VICs may exhibit cellular-scale sex differences in the context of angiogenesis. The current study sought to investigate the production of angiogenesis-related factors by male and female VICs possessing quiescent (qVIC) or activated (aVIC) phenotypes. Production of several pro-angiogenic growth factors was elevated in porcine aVICs relative to qVICs, with sex differences found in both the total amounts secreted and their distribution across media vs. lysate. Porcine valvular endothelial cells (VECs) were also sex-separated in culture and found to behave similarly with respect to metabolic activity, viability, and tubulogenesis, but male VECs exhibited higher proliferation rates than female VECs. VECs responded to sex-matched media conditioned by VICs with increased tubulogenesis, but decreased proliferation, particularly upon treatment with aVIC-derived media. It is likely that this attenuation of proliferation resulted from a combination of decreased basic fibroblast growth factor and increased thrombospondin-2 (TSP2) secreted by aVICs. Overall, this study indicates that VICs regulate angiogenic VEC behavior via an array of paracrine molecules, whose secretion and sequestration are affected by both VIC phenotype and sex. Moreover, strong sex differences in TSP2 secretion by VICs may have implications for understanding sexual dimorphism in valve fibrosis, as TSP2 is also a powerful regulator of fibrosis.


2021 ◽  
Vol 8 (8) ◽  
pp. 98
Author(s):  
Richard L. Goodwin ◽  
Arash Kheradvar ◽  
Russell A. Norris ◽  
Robert L. Price ◽  
Jay D. Potts

Collagen fibers are essential structural components of mitral valve leaflets, their tension apparatus (chordae tendineae), and the associated papillary muscles. Excess or lack of collagen fibers in the extracellular matrix (ECM) in any of these structures can adversely affect mitral valve function. The organization of collagen fibers provides a sophisticated framework that allows for unidirectional blood flow during the precise opening and closing of this vital heart valve. Although numerous ECM molecules are essential for the differentiation, growth, and homeostasis of the mitral valve (e.g., elastic fibers, glycoproteins, and glycans), collagen fibers are key to mitral valve integrity. Besides the inert structural components of the tissues, collagen fibers are dynamic structures that drive outside-to-inside cell signaling, which informs valvular interstitial cells (VICs) present within the tissue environment. Diversity of collagen family members and the closely related collagen-like triple helix-containing proteins found in the mitral valve, will be discussed in addition to how defects in these proteins may lead to valve disease.


2021 ◽  
Vol 8 ◽  
Author(s):  
Joshua D. Hutcheson ◽  
Florian Schlotter ◽  
Michael D. Creager ◽  
Xiaoshuang Li ◽  
Tan Pham ◽  
...  

Objective: Aortic valve (AV) leaflets rely on a precise extracellular matrix (ECM) microarchitecture for appropriate biomechanical performance. The ECM structure is maintained by valvular interstitial cells (VICs), which reside within the leaflets. The presence of pigment produced by a melanocytic population of VICs in mice with dark coats has been generally regarded as a nuisance, as it interferes with histological analysis of the AV leaflets. However, our previous studies have shown that the presence of pigment correlates with increased mechanical stiffness within the leaflets as measured by nanoindentation analyses. In the current study, we seek to better characterize the phenotype of understudied melanocytic VICs, explore the role of these VICs in ECM patterning, and assess the presence of these VICs in human aortic valve tissues.Approach and Results: Immunofluorescence and immunohistochemistry revealed that melanocytes within murine AV leaflets express phenotypic markers of either neuronal or glial cells. These VIC subpopulations exhibited regional patterns that corresponded to the distribution of elastin and glycosaminoglycan ECM proteins, respectively. VICs with neuronal and glial phenotypes were also found in human AV leaflets and showed ECM associations similar to those observed in murine leaflets. A subset of VICs within human AV leaflets also expressed dopachrome tautomerase, a common melanocyte marker. A spontaneous mouse mutant with no aortic valve pigmentation lacked elastic fibers and had reduced elastin gene expression within AV leaflets. A hyperpigmented transgenic mouse exhibited increased AV leaflet elastic fibers and elastin gene expression.Conclusions: Melanocytic VIC subpopulations appear critical for appropriate elastogenesis in mouse AVs, providing new insight into the regulation of AV ECM homeostasis. The identification of a similar VIC population in human AVs suggests conservation across species.


2021 ◽  
Vol 13 (2) ◽  
pp. 222
Author(s):  
T. Levesque ◽  
N. Perzo ◽  
E. Berg ◽  
H. Messaoudi ◽  
A. Herbet ◽  
...  

Biomedicines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 427
Author(s):  
Enikő Balogh ◽  
Arpan Chowdhury ◽  
Haneen Ababneh ◽  
Dávid Máté Csiki ◽  
Andrea Tóth ◽  
...  

Calcific aortic valve stenosis (CAVS) is a heart disease characterized by the progressive fibro-calcific remodeling of the aortic valves, an actively regulated process with the involvement of the reactive oxygen species-mediated differentiation of valvular interstitial cells (VICs) into osteoblast-like cells. Nuclear factor erythroid 2-related factor 2 (Nrf2) regulates the expression of a variety of antioxidant genes, and plays a protective role in valve calcification. Heme oxygenase-1 (HO-1), an Nrf2-target gene, is upregulated in human calcified aortic valves. Therefore, we investigated the effect of Nrf2/HO-1 axis in VIC calcification. We induced osteogenic differentiation of human VICs with elevated phosphate and calcium-containing osteogenic medium (OM) in the presence of heme. Heme inhibited Ca deposition and OM-induced increase in alkaline phosphatase and osteocalcin (OCN) expression. Heme induced Nrf2 and HO-1 expression in VICs. Heme lost its anti-calcification potential when we blocked transcriptional activity Nrf2 or enzyme activity of HO-1. The heme catabolism products bilirubin, carbon monoxide, and iron, and also ferritin inhibited OM-induced Ca deposition and OCN expression in VICs. This study suggests that heme-mediated activation of the Nrf2/HO-1 pathway inhibits the calcification of VICs. The anti-calcification effect of heme is attributed to the end products of HO-1-catalyzed heme degradation and ferritin.


2021 ◽  
Vol 5 (sup1) ◽  
pp. 24-24
Author(s):  
Claudia Dittfeld ◽  
Florian Schmieder ◽  
Dominic Salminger ◽  
Stephan Behrens ◽  
Anett Jannasch ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document