Abstract #24: Transcranial direct current stimulation (tDCS) electric field modeling in children after perinatal stroke

2019 ◽  
Vol 12 (2) ◽  
pp. e9
Author(s):  
H.L. Carlson ◽  
A. Giuffre ◽  
P. Ciechanski ◽  
A. Kirton
2019 ◽  
Vol 19 (10) ◽  
pp. 1025-1035 ◽  
Author(s):  
Renata de Melo Felipe da Silva ◽  
Marcelo Camargo Batistuzzo ◽  
Roseli Gedanke Shavitt ◽  
Eurípedes Constantino Miguel ◽  
Emily Stern ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Edward T. Dougherty ◽  
James C. Turner ◽  
Frank Vogel

Transcranial direct current stimulation (tDCS) continues to demonstrate success as a medical intervention for neurodegenerative diseases, psychological conditions, and traumatic brain injury recovery. One aspect of tDCS still not fully comprehended is the influence of the tDCS electric field on neural functionality. To address this issue, we present a mathematical, multiscale model that couples tDCS administration to neuron electrodynamics. We demonstrate the model’s validity and medical applicability with computational simulations using an idealized two-dimensional domain and then an MRI-derived, three-dimensional human head geometry possessing inhomogeneous and anisotropic tissue conductivities. We exemplify the capabilities of these simulations with real-world tDCS electrode configurations and treatment parameters and compare the model’s predictions to those attained from medical research studies. The model is implemented using efficient numerical strategies and solution techniques to allow the use of fine computational grids needed by the medical community.


NeuroImage ◽  
2015 ◽  
Vol 109 ◽  
pp. 140-150 ◽  
Author(s):  
Alexander Opitz ◽  
Walter Paulus ◽  
Susanne Will ◽  
Andre Antunes ◽  
Axel Thielscher

2021 ◽  
pp. 1-17
Author(s):  
Ingrid Daae Rasmussen ◽  
Nya Mehnwolo Boayue ◽  
Matthias Mittner ◽  
Martin Bystad ◽  
Ole K. Grnli ◽  
...  

Background: The optimal stimulation parameters when using transcranial direct current stimulation (tDCS) to improve memory performance in patients with Alzheimer’s disease (AD) are lacking. In healthy individuals, inter-individual differences in brain anatomy significantly influence current distribution during tDCS, an effect that might be aggravated by variations in cortical atrophy in AD patients. Objective: To measure the effect of individualized HD-tDCS in AD patients. Methods: Nineteen AD patients were randomly assigned to receive active or sham high-definition tDCS (HD-tDCS). Computational modeling of the HD-tDCS-induced electric field in each patient’s brain was analyzed based on magnetic resonance imaging (MRI) scans. The chosen montage provided the highest net anodal electric field in the left dorsolateral prefrontal cortex (DLPFC). An accelerated HD-tDCS design was conducted (2 mA for 3×20 min) on two separate days. Pre- and post-intervention cognitive tests and T1 and T2-weighted MRI and diffusion tensor imaging data at baseline were analyzed. Results: Different montages were optimal for individual patients. The active HD-tDCS group improved significantly in delayed memory and MMSE performance compared to the sham group. Five participants in the active group had higher scores on delayed memory post HD-tDCS, four remained stable and one declined. The active HD-tDCS group had a significant positive correlation between fractional anisotropy in the anterior thalamic radiation and delayed memory score. Conclusion: HD-tDCS significantly improved delayed memory in AD. Our study can be regarded as a proof-of-concept attempt to increase tDCS efficacy. The present findings should be confirmed in larger samples.


2018 ◽  
Vol 11 (1) ◽  
pp. 94-103 ◽  
Author(s):  
Helen L. Carlson ◽  
Patrick Ciechanski ◽  
Ashley D. Harris ◽  
Frank P. MacMaster ◽  
Adam Kirton

Neurology ◽  
2016 ◽  
Vol 88 (3) ◽  
pp. 259-267 ◽  
Author(s):  
Adam Kirton ◽  
Patrick Ciechanski ◽  
Ephrem Zewdie ◽  
John Andersen ◽  
Alberto Nettel-Aguirre ◽  
...  

Objective:To determine whether the addition of transcranial direct current stimulation (tDCS) to intensive therapy increases motor function in children with perinatal stroke and hemiparetic cerebral palsy.Methods:This was a randomized, controlled, double-blind clinical trial. Participants were recruited from a population-based cohort with MRI-classified unilateral perinatal stroke, age of 6 to 18 years, and disabling hemiparesis. All completed a goal-directed, peer-supported, 2-week after-school motor learning camp (32 hours of therapy). Participants were randomized 1:1 to 1 mA cathodal tDCS over the contralesional primary motor cortex (M1) for the initial 20 minutes of daily therapy or sham. Primary subjective (Canadian Occupational Performance Measure [COPM]), objective (Assisting Hand Assessment [AHA]), safety, and secondary outcomes were measured at 1 week and 2 months after intervention. Analysis was by intention to treat.Results:Twenty-four participants were randomized (median age 11.8 ± 2.7 years, range 6.7–17.8). COPM performance and satisfaction scores doubled at 1 week with sustained gains at 2 months (p < 0.001). COPM scores increased more with tDCS compared to sham control (p = 0.004). AHA scores demonstrated only mild increases at both time points with no tDCS effects. Procedures were safe and well tolerated with no decrease in either arm function or serious adverse events.Conclusion:tDCS trials appear feasible and safe in hemiparetic children. Lack of change in objective motor function may reflect underdosing of therapy. Marked gains in subjective function with tDCS warrant further study.ClinicalTrials.gov identifier:NCT02170285.Classification of evidence:This study provides Class II evidence that for children with perinatal stroke and hemiparetic cerebral palsy, the addition of tDCS to moderate-dose motor learning therapy does not significantly improve motor function as measured by the AHA.


Sign in / Sign up

Export Citation Format

Share Document