scholarly journals A physical neural mass modeling framework for laminar cortical circuits in brain stimulation

2021 ◽  
Vol 14 (6) ◽  
pp. 1592
Author(s):  
Roser Sanchez-Todo ◽  
André M. Bastos ◽  
Borja Mercadal ◽  
Edmundo Lopez Sola ◽  
Maria Guasch ◽  
...  
2021 ◽  
Vol 14 (6) ◽  
pp. 1677
Author(s):  
Edmundo Lopez-Sola ◽  
Roser Sanchez-Todo ◽  
Elia Lleal ◽  
Elif Köksal-Ersöz ◽  
Maxime Yochum ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Roberto C. Sotero

Phase-amplitude coupling (PAC), the phenomenon where the amplitude of a high frequency oscillation is modulated by the phase of a lower frequency oscillation, is attracting an increasing interest in the neuroscience community due to its potential relevance for understanding healthy and pathological information processing in the brain. PAC is a diverse phenomenon, having been experimentally detected in at least ten combinations of rhythms: delta-theta, delta-alpha, delta-beta, delta-gamma, theta-alpha, theta-beta, theta-gamma, alpha-beta, alpha-gamma, and beta-gamma. However, a complete understanding of the biophysical mechanisms generating this diversity is lacking. Here we review computational models of PAC generation that range from detailed models of neuronal networks, where each cell is described by Hodgkin-Huxley-type equations, to neural mass models (NMMs) where only the average activities of neuronal populations are considered. We argue that NMMs are an appropriate mathematical framework (due to the small number of parameters and variables involved and the richness of the dynamics they can generate) to study the PAC phenomenon.


2020 ◽  
Vol 131 (4) ◽  
pp. e78-e79
Author(s):  
G. Ruffini ◽  
R. Sanchez-Todo ◽  
L. Dubreuil ◽  
R. Salvador ◽  
D. Pinotsis ◽  
...  

2021 ◽  
Vol 64 ◽  
pp. 244-257
Author(s):  
Kaviraja Udupa

Transcranial magnetic stimulation (TMS) is a non-invasive, painless technique to stimulate the human brain. Although it has been used in clinical research both as an investigative tool and treatment modality for the past three decades, its use has been restricted to tertiary health centres or higher-end academic research institutions. The aim of this review is to popularise the concepts of this effective non-invasive brain stimulation technique, further facilitating its use both in research and clinical practice among clinical physiologists. In the first part of this article, a brief physiologic overview of TMS will be provided with basic as well as the basic technical details. This is followed by a discussion of TMS parameters that can be studied using single and paired pulses of TMS which could be used to investigate the altered excitability of cortical circuits. Finally, how rTMS and patterned TMS could be used to induce plasticity which, in turn, could be potentially used as therapeutic interventions in various neurological and psychiatric disorders will be illustrated. In each section of this article, diagnostic as well as therapeutic utilities of TMS in Neurology and Psychiatric disorders will be discussed. These discussions could not only facilitate the understanding of pathophysiology of mood and movement disorders but also to manage various neurological and psychiatric disorders with novel therapeutic options. In the end, few future directions, limitations of this technique and comparison with other techniques will be provided. I hopefully, this review would elicit some interest in physiologists to take up this exciting area of brain stimulation as a research subject and work further on understanding the functions of brain and use it effectively in the management of various brain-related disorders.


2019 ◽  
Author(s):  
Christoforos A. Papasavvas ◽  
Yujiang Wang

AbstractBoth subtractive and divisive inhibition has been recorded in cortical circuits and recent findings suggest that different interneuronal populations are responsible for the different types of inhibition. This calls for the formulation and description of these inhibitory mechanisms in computational models of cortical networks. Neural mass and neural field models typically only feature subtractive inhibition. Here, we introduce how divisive inhibition can be incorporated in such models, using the Wilson-Cowan modelling formalism as an example. In addition, we show how the subtractive and divisive modulations can be combined. Including divisive inhibition in neural mass models is a crucial step in understanding its role in shaping oscillatory phenomena in cortical networks.


2018 ◽  
Vol 75 (7) ◽  
pp. 448-454
Author(s):  
Thomas Grunwald ◽  
Judith Kröll

Zusammenfassung. Wenn mit den ersten beiden anfallspräventiven Medikamenten keine Anfallsfreiheit erzielt werden konnte, so ist die Wahrscheinlichkeit, dies mit anderen Medikamenten zu erreichen, nur noch ca. 10 %. Es sollte dann geprüft werden, warum eine Pharmakoresistenz besteht und ob ein epilepsiechirurgischer Eingriff zur Anfallsfreiheit führen kann. Ist eine solche Operation nicht möglich, so können palliative Verfahren wie die Vagus-Nerv-Stimulation (VNS) und die tiefe Hirnstimulation (Deep Brain Stimulation) in eine bessere Anfallskontrolle ermöglichen. Insbesondere bei schweren kindlichen Epilepsien stellt auch die ketogene Diät eine zu erwägende Option dar.


Sign in / Sign up

Export Citation Format

Share Document