Personalized recognition of wake/sleep state based on the combined shapelets and K-means algorithm

2022 ◽  
Vol 71 ◽  
pp. 103132
Author(s):  
Duyan Geng ◽  
Zhaoxu Qin ◽  
Jiaxing Wang ◽  
Zeyu Gao ◽  
Ning Zhao
Keyword(s):  
Fractals ◽  
2020 ◽  
Vol 28 (02) ◽  
pp. 2050050
Author(s):  
V. E. ARCE-GUEVARA ◽  
M. O. MENDEZ ◽  
J. S. MURGUÍA ◽  
A. ALBA ◽  
H. GONZÁLEZ-AGUILAR ◽  
...  

In this work, the scaling behavior of the sleep process is evaluated by using detrended fluctuation analysis based on wavelets. The analysis is carried out from arrivals of short and recurrent cortical events called A-phases, which in turn build up the Cyclic Alternating Pattern phenomenon, and are classified in three types: A1, A2 and A3. In this study, 61 sleep recordings corresponding to healthy, nocturnal frontal lobe epilepsy patients and sleep-state misperception subjects, were analyzed. From the A-phase annotations, the onsets were extracted and a binary sequence with one second resolution was generated. An item in the sequence has a value of one if an A-phase onset occurs in the corresponding window, and a value of zero otherwise. In addition, we consider other different temporal resolutions from 2[Formula: see text]s to 256[Formula: see text]s. Furthermore, the same analysis was carried out for sequences obtained from the different types of A-phases and their combinations. The results of the numerical analysis showed a relationship between the time resolutions and the scaling exponents; specifically, for higher time resolutions a white noise behavior is observed, whereas for lower time resolutions a behavior towards to [Formula: see text]-noise is exhibited. Statistical differences among groups were observed by applying various wavelet functions from the Daubechies family and choosing the appropriate sequence of A-phase onsets. This scaling analysis allows the characterization of the free-scale dynamic of the sleep process that is specific for each sleep condition. The scaling exponent could be useful as a diagnosis parameter in clinics when sleep macrostructure does not offer enough information.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 637
Author(s):  
Nicholas S. Moore ◽  
Robert A. Mans ◽  
Mackenzee K. McCauley ◽  
Colton S. Allgood ◽  
Keri A. Barksdale

Evidence from human and animal studies indicate that disrupted light cycles leads to alterations of the sleep state, poor cognition, and the risk of developing neuroinflammatory and generalized health disorders. Zebrafish exhibit a diurnal circadian rhythm and are an increasingly popular model in studies of neurophysiology and neuropathophysiology. Here, we investigate the effect of alterations in light cycle on the adult zebrafish brain: we measured the effect of altered, unpredictable light exposure in adult zebrafish telencephalon, homologous to mammalian hippocampus, and the optic tectum, a significant visual processing center with extensive telencephalon connections. The expression of heat shock protein-70 (HSP70), an important cell stress mediator, was significantly decreased in optic tectum of adult zebrafish brain following four days of altered light exposure. Further, pSer473-Akt (protein kinase B) was significantly reduced in telencephalon following light cycle alteration, and pSer9-GSK3β (glycogen synthase kinase-3β) was significantly reduced in both the telencephalon and optic tectum of light-altered fish. Animals exposed to five minutes of environmental enrichment showed significant increase in pSer473Akt, which was significantly attenuated by four days of altered light exposure. These data show for the first time that unpredictable light exposure alters HSP70 expression and dysregulates Akt-GSK3β signaling in the adult zebrafish brain.


Entropy ◽  
2021 ◽  
Vol 23 (1) ◽  
pp. 116
Author(s):  
Xiangfa Zhao ◽  
Guobing Sun

Automatic sleep staging with only one channel is a challenging problem in sleep-related research. In this paper, a simple and efficient method named PPG-based multi-class automatic sleep staging (PMSS) is proposed using only a photoplethysmography (PPG) signal. Single-channel PPG data were obtained from four categories of subjects in the CAP sleep database. After the preprocessing of PPG data, feature extraction was performed from the time domain, frequency domain, and nonlinear domain, and a total of 21 features were extracted. Finally, the Light Gradient Boosting Machine (LightGBM) classifier was used for multi-class sleep staging. The accuracy of the multi-class automatic sleep staging was over 70%, and the Cohen’s kappa statistic k was over 0.6. This also showed that the PMSS method can also be applied to stage the sleep state for patients with sleep disorders.


2004 ◽  
Vol 91 (6) ◽  
pp. 2649-2657 ◽  
Author(s):  
Beata Jarosiewicz ◽  
William E. Skaggs

The sleeping rat cycles between two well-characterized hippocampal physiological states, large irregular activity (LIA) during slow-wave sleep (SWS) and theta activity during rapid-eye-movement sleep (REM). A third, less well-characterized electroencephalographic (EEG) state, termed “small irregular activity” (SIA), has been reported to occur when an animal is startled out of sleep without moving and during active waking when it abruptly freezes. We recently found that the hippocampal population activity of a spontaneous sleep state whose EEG resembles SIA reflects the rat's current location in space, suggesting that it is also a state of heightened arousal. To test whether this spontaneous SIA state corresponds to the SIA state reported in the literature and to compare the level of arousal during SIA to the other well-characterized physiological states, we recorded unit activity from ensembles of hippocampal CA1 pyramidal cells, EEG from the hippocampus and the neocortex, and electromyography (EMG) from the dorsal neck musculature in rats presented with auditory stimuli while foraging for randomly scattered food pellets and while sleeping. Auditory stimuli presented during sleep reliably induced SIA episodes very similar to spontaneous SIA in hippocampal and neocortical EEG amplitudes and power spectra, EMG amplitude, and CA1 population activity. Both spontaneous and elicited SIA exhibited neocortical desynchronization, and both had EMG amplitude comparable to that of waking LIA. We conclude based on this and other evidence that spontaneous SIA and elicited SIA correspond to a single state and that the level of arousal in SIA is higher than in the well-characterized sleep states but lower than the active theta state.


2020 ◽  
Vol 40 (10) ◽  
pp. 1975-1986
Author(s):  
Nicholas B Bèchet ◽  
Tekla M Kylkilahti ◽  
Bengt Mattsson ◽  
Martina Petrasova ◽  
Nagesh C Shanbhag ◽  
...  

Fluid transport in the perivascular space by the glia-lymphatic (glymphatic) system is important for the removal of solutes from the brain parenchyma, including peptides such as amyloid-beta which are implicated in the pathogenesis of Alzheimer’s disease. The glymphatic system is highly active in the sleep state and under the influence of certain of anaesthetics, while it is suppressed in the awake state and by other anaesthetics. Here we investigated whether light sheet fluorescence microscopy of whole optically cleared murine brains was capable of detecting glymphatic differences in sleep- and awake-mimicking anaesthesia, respectively. Using light-sheet imaging of whole brains, we found anaesthetic-dependent cerebrospinal fluid (CSF) influx differences, including reduced tracer influx along tertiary branches of the middle cerebral artery and reduced influx along dorsal and anterior penetrating arterioles, in the awake-mimicking anaesthesia. This study establishes that light sheet microscopy of optically cleared brains is feasible for quantitative analyses and can provide images of the entire glymphatic system in whole brains.


1988 ◽  
Vol 18 (2-3) ◽  
pp. 175-184 ◽  
Author(s):  
D.J. Manning ◽  
P.J. Bowden ◽  
M.K.S. Hathorn ◽  
J.K. Stothers

1992 ◽  
Vol 151 (7) ◽  
pp. 526-527 ◽  
Author(s):  
G. M. Stokes ◽  
A. D. Milner ◽  
C. J. Upton

2005 ◽  
Vol 81 (8) ◽  
pp. 673-681 ◽  
Author(s):  
Rita Tuladhar ◽  
Richard Harding ◽  
T. Michael Adamson ◽  
Rosemary S.C. Horne

2010 ◽  
Vol 44-47 ◽  
pp. 1412-1416
Author(s):  
Geng Sheng Zheng ◽  
Cheng Liang Li

This paper presents the design and implementation of a RF remote controller using code matching and frequency hopping technology. The proposed controller supports access to different random channels under disturbance environment. The work process of RF remote controller is composed of code matching, running state, handover state, and sleep state. Four system states can transform each other under corresponding external conditions. The suggested controller is more reliable than conventional ones especially during emergency condition such as noise and co-channel interference. The feasibility of the architecture has been demonstrated with a prototype implementation and presented in details.


Sign in / Sign up

Export Citation Format

Share Document