The synergy effect of temporal and spatial alliesthesia on occupants’ thermal comfort in air-conditioned temporarily occupied spaces (TOS)

2021 ◽  
pp. 108699
Author(s):  
Zhe Li ◽  
Bin Yang ◽  
Dacheng Jin ◽  
Xiaojing Li ◽  
Faming Wang ◽  
...  
2015 ◽  
Vol 83 ◽  
pp. 91-103 ◽  
Author(s):  
L.W.A. van Hove ◽  
C.M.J. Jacobs ◽  
B.G. Heusinkveld ◽  
J.A. Elbers ◽  
B.L. van Driel ◽  
...  

1994 ◽  
Vol 144 ◽  
pp. 275-277
Author(s):  
M. Karlický ◽  
J. C. Hénoux

AbstractUsing a new ID hybrid model of the electron bombardment in flare loops, we study not only the evolution of densities, plasma velocities and temperatures in the loop, but also the temporal and spatial evolution of hard X-ray emission. In the present paper a continuous bombardment by electrons isotropically accelerated at the top of flare loop with a power-law injection distribution function is considered. The computations include the effects of the return-current that reduces significantly the depth of the chromospheric layer which is evaporated. The present modelling is made with superthermal electron parameters corresponding to the classical resistivity regime for an input energy flux of superthermal electrons of 109erg cm−2s−1. It was found that due to the electron bombardment the two chromospheric evaporation waves are generated at both feet of the loop and they propagate up to the top, where they collide and cause temporary density and hard X-ray enhancements.


Author(s):  
James E. Crandall ◽  
Linda C. Hassinger ◽  
Gerald A. Schwarting

Cell surface glycoconjugates are considered to play important roles in cell-cell interactions in the developing central nervous system. We have previously described a group of monoclonal antibodies that recognize defined carbohydrate epitopes and reveal unique temporal and spatial patterns of immunoreactivity in the developing main and accessory olfactory systems in rats. Antibody CC2 reacts with complex α-galactosyl and α-fucosyl glycoproteins and glycolipids. Antibody CC1 reacts with terminal N-acetyl galactosamine residues of globoside-like glycolipids. Antibody 1B2 reacts with β-galactosyl glycolipids and glycoproteins. Our light microscopic data suggest that these antigens may be located on the surfaces of axons of the vomeronasal and olfactory nerves as well as on some of their target neurons in the main and accessory olfactory bulbs.


Author(s):  
John R. Palisano

Although confronting cistemae (CC) have been observed in a variety of tumor cells and normal fetal rat, mouse, and human epithelial tissues, little is known about their origin or role in mitotic cells. While several investigators have suggested that CC arise from nuclear envelope (NE) folding back on itself during prophase, others have suggested that CC arise when fragments of NE pair with endoplasmic reticulum. An electron microscopic investigation of 0.25 um thick serial sections was undertaken to examine the origin of CC in HeLa cells.


Author(s):  
Frank J. Longo

Measurement of the egg's electrical activity, the fertilization potential or the activation current (in voltage clamped eggs), provides a means of detecting the earliest perceivable response of the egg to the fertilizing sperm. By using the electrical physiological record as a “real time” indicator of the instant of electrical continuity between the gametes, eggs can be inseminated with sperm at lower, more physiological densities, thereby assuring that only one sperm interacts with the egg. Integrating techniques of intracellular electrophysiological recording, video-imaging, and electron microscopy, we are able to identify the fertilizing sperm precisely and correlate the status of gamete organelles with the first indication (fertilization potential/activation current) of the egg's response to the attached sperm. Hence, this integrated system provides improved temporal and spatial resolution of morphological changes at the site of gamete interaction, under a variety of experimental conditions. Using these integrated techniques, we have investigated when sperm-egg plasma membrane fusion occurs in sea urchins with respect to the onset of the egg's change in electrical activity.


2020 ◽  
Vol 64 (2) ◽  
pp. 325-336 ◽  
Author(s):  
Dimitriya H. Garvanska ◽  
Jakob Nilsson

Abstract Kinetochores are instrumental for accurate chromosome segregation by binding to microtubules in order to move chromosomes and by delaying anaphase onset through the spindle assembly checkpoint (SAC). Dynamic phosphorylation of kinetochore components is key to control these activities and is tightly regulated by temporal and spatial recruitment of kinases and phosphoprotein phosphatases (PPPs). Here we focus on PP1, PP2A-B56 and PP2A-B55, three PPPs that are important regulators of mitosis. Despite the fact that these PPPs share a very similar active site, they target unique ser/thr phosphorylation sites to control kinetochore function. Specificity is in part achieved by PPPs binding to short linear motifs (SLiMs) that guide their substrate specificity. SLiMs bind to conserved pockets on PPPs and are degenerate in nature, giving rise to a range of binding affinities. These SLiMs control the assembly of numerous substrate specifying complexes and their position and binding strength allow PPPs to target specific phosphorylation sites. In addition, the activity of PPPs is regulated by mitotic kinases and inhibitors, either directly at the activity level or through affecting PPP–SLiM interactions. Here, we discuss recent progress in understanding the regulation of PPP specificity and activity and how this controls kinetochore biology.


Boreas ◽  
2002 ◽  
Vol 31 (1) ◽  
pp. 65-74 ◽  
Author(s):  
Christian Christiansen ◽  
Helmar Kunzendorf ◽  
Kay-Christian Emeis ◽  
Rudolf Endler ◽  
Ulrich Struck ◽  
...  

2015 ◽  
Vol 14 (2) ◽  
pp. 61-69 ◽  
Author(s):  
Cornelia Gerdenitsch ◽  
Bettina Kubicek ◽  
Christian Korunka

Supported by media technologies, today’s employees can increasingly decide when and where to work. The present study examines positive and negative aspects of this temporal and spatial flexibility, and the perceptions of control in these situations based on propositions of self-determination theory. Using an exploratory approach we conducted semi-structured interviews with 45 working digital natives. Participants described positive and negative situations separately for temporal and spatial flexibility, and rated the extent to which they felt autonomous and externally controlled. Situations appraised positively were best described by decision latitude, while negatively evaluated ones were best described by work–nonwork conflict. Positive situations were perceived as autonomous rather than externally controlled; negative situations were rated as autonomously and externally controlled to a similar extent.


Sign in / Sign up

Export Citation Format

Share Document