The effects of disease dispersal and host clustering on the epidemic threshold in plants

2004 ◽  
Vol 66 (2) ◽  
pp. 341-371 ◽  
Author(s):  
D Brown
Author(s):  
Juan Yang ◽  
Valentina Marziano ◽  
Xiaowei Deng ◽  
Giorgio Guzzetta ◽  
Juanjuan Zhang ◽  
...  

AbstractCOVID-19 vaccination is being conducted in over 200 countries and regions to control SARS-CoV-2 transmission and return to a pre-pandemic lifestyle. However, understanding when non-pharmaceutical interventions (NPIs) can be lifted as immunity builds up remains a key question for policy makers. To address this, we built a data-driven model of SARS-CoV-2 transmission for China. We estimated that, to prevent the escalation of local outbreaks to widespread epidemics, stringent NPIs need to remain in place at least one year after the start of vaccination. Should NPIs alone be capable of keeping the reproduction number (Rt) around 1.3, the synergetic effect of NPIs and vaccination could reduce the COVID-19 burden by up to 99% and bring Rt below the epidemic threshold in about 9 months. Maintaining strict NPIs throughout 2021 is of paramount importance to reduce COVID-19 burden while vaccines are distributed to the population, especially in large populations with little natural immunity.


2021 ◽  
Vol 10 (s1) ◽  
Author(s):  
Said Gounane ◽  
Yassir Barkouch ◽  
Abdelghafour Atlas ◽  
Mostafa Bendahmane ◽  
Fahd Karami ◽  
...  

Abstract Recently, various mathematical models have been proposed to model COVID-19 outbreak. These models are an effective tool to study the mechanisms of coronavirus spreading and to predict the future course of COVID-19 disease. They are also used to evaluate strategies to control this pandemic. Generally, SIR compartmental models are appropriate for understanding and predicting the dynamics of infectious diseases like COVID-19. The classical SIR model is initially introduced by Kermack and McKendrick (cf. (Anderson, R. M. 1991. “Discussion: the Kermack–McKendrick Epidemic Threshold Theorem.” Bulletin of Mathematical Biology 53 (1): 3–32; Kermack, W. O., and A. G. McKendrick. 1927. “A Contribution to the Mathematical Theory of Epidemics.” Proceedings of the Royal Society 115 (772): 700–21)) to describe the evolution of the susceptible, infected and recovered compartment. Focused on the impact of public policies designed to contain this pandemic, we develop a new nonlinear SIR epidemic problem modeling the spreading of coronavirus under the effect of a social distancing induced by the government measures to stop coronavirus spreading. To find the parameters adopted for each country (for e.g. Germany, Spain, Italy, France, Algeria and Morocco) we fit the proposed model with respect to the actual real data. We also evaluate the government measures in each country with respect to the evolution of the pandemic. Our numerical simulations can be used to provide an effective tool for predicting the spread of the disease.


2018 ◽  
Vol 62 ◽  
pp. 139-157 ◽  
Author(s):  
Yusra Bibi Ruhomally ◽  
Nabeelah Banon Jahmeerbaccus ◽  
Muhammad Zaid Dauhoo

We study the NERA model that describes the dynamic evolution of illicit drug usage in a population. The model consists of nonusers (N) and three categories of drug users: the experimental (E) category, the recreational (R) category and the addict (A) category. Two epidemic threshold term known as the reproduction numbers, R0 and μ are defined and derived. Sensitivity analysis of R0 on the parameters are performed in order to determine their relative importance to illicit drug prevalence. The local and global stability of the equilibrium states are also analysed. We also prove that a transcritical bifurcation occurs at R0 = 1. It is shown that an effective campaign of prevention can help to fight against the prevalence of illicit drug consumption. We demonstrate persistence when R0 > 1 and conditions for the extinction of drug consumption are also established. Numerical simulations are performed to verify our model. Our results show that the NERA model can assist policy makers in targeting prevention for maximum effectiveness and can be used to adopt evidence-based policies to better monitor and quantify drug use trends.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 156
Author(s):  
Juntao Zhu ◽  
Hong Ding ◽  
Yuchen Tao ◽  
Zhen Wang ◽  
Lanping Yu

The spread of a computer virus among the Internet of Things (IoT) devices can be modeled as an Epidemic Containment (EC) game, where each owner decides the strategy, e.g., installing anti-virus software, to maximize his utility against the susceptible-infected-susceptible (SIS) model of the epidemics on graphs. The EC game’s canonical solution concepts are the Minimum/Maximum Nash Equilibria (MinNE/MaxNE). However, computing the exact MinNE/MaxNE is NP-hard, and only several heuristic algorithms are proposed to approximate the MinNE/MaxNE. To calculate the exact MinNE/MaxNE, we provide a thorough analysis of some special graphs and propose scalable and exact algorithms for general graphs. Especially, our contributions are four-fold. First, we analytically give the MinNE/MaxNE for EC on special graphs based on spectral radius. Second, we provide an integer linear programming formulation (ILP) to determine MinNE/MaxNE for the general graphs with the small epidemic threshold. Third, we propose a branch-and-bound (BnB) framework to compute the exact MinNE/MaxNE in the general graphs with several heuristic methods to branch the variables. Fourth, we adopt NetShiled (NetS) method to approximate the MinNE to improve the scalability. Extensive experiments demonstrate that our BnB algorithm can outperform the naive enumeration method in scalability, and the NetS can improve the scalability significantly and outperform the previous heuristic method in solution quality.


2013 ◽  
Vol 87 (6) ◽  
Author(s):  
Hyun Keun Lee ◽  
Pyoung-Seop Shim ◽  
Jae Dong Noh

Author(s):  
Folorunso O. Fasina ◽  
Japhta M. Mokoele ◽  
B. Tom Spencer ◽  
Leo A.M.L. Van Leengoed ◽  
Yvette Bevis ◽  
...  

Infectious and zoonotic disease outbreaks have been linked to increasing volumes of legal and illegal trade. Spatio-temporal and trade network analyses have been used to evaluate the risks associated with these challenges elsewhere, but few details are available for the pig sector in South Africa. Regarding pig diseases, Limpopo province is important as the greater part of the province falls within the African swine fever control area. Emerging small-scale pig farmers in Limpopo perceived pig production as an important means of improving their livelihood and an alternative investment. They engage in trading and marketing their products with a potential risk to animal health, because the preferred markets often facilitate potential longdistance spread and disease dispersal over broad geographic areas. In this study, we explored the interconnectedness of smallholder pig farmers in Limpopo, determined the weaknesses and critical control points, and projected interventions that policy makers can implement to reduce the risks to pig health. The geo-coordinates of surveyed farms were used to draw maps, links and networks. Predictive risks to pigs were determined through the analyses of trade networks, and the relationship to previous outbreaks of African swine fever was postulated. Auction points were identified as high-risk areas for the spread of animal diseases. Veterinary authorities should prioritise focused surveillance and diagnostic efforts in Limpopo. Early disease detection and prompt eradication should be targeted and messages promoting enhanced biosecurity to smallholder farmers are advocated. The system may also benefit from the restructuring of marketing and auction networks. Since geographic factors and networks can rapidly facilitate pig disease dispersal over large areas, a multi-disciplinary approach to understanding the complexities that exist around the animal disease epidemiology becomes mandatory.


Author(s):  
Juanjuan Zhang ◽  
Maria Litvinova ◽  
Wei Wang ◽  
Yan Wang ◽  
Xiaowei Deng ◽  
...  

AbstractBackgroundThe COVID-19 epidemic originated in Wuhan City of Hubei Province in December 2019 and has spread throughout China. Understanding the fast evolving epidemiology and transmission dynamics of the outbreak beyond Hubei would provide timely information to guide intervention policy.MethodsWe collected individual information on 8,579 laboratory-confirmed cases from official publically sources reported outside Hubei in mainland China, as of February 17, 2020. We estimated the temporal variation of the demographic characteristics of cases and key time-to-event intervals. We used a Bayesian approach to estimate the dynamics of the net reproduction number (Rt) at the provincial level.ResultsThe median age of the cases was 44 years, with an increasing of cases in younger age groups and the elderly as the epidemic progressed. The delay from symptom onset to hospital admission decreased from 4.4 days (95%CI: 0.0-14.0) until January 27 to 2.6 days (0.0-9.0) from January 28 to February 17. The mean incubation period was estimated at 5.2 days (1.8-12.4) and the mean serial interval at 5.1 days (1.3-11.6). The epidemic dynamics in provinces outside Hubei was highly variable, but consistently included a mix of case importations and local transmission. We estimate that the epidemic was self-sustained for less than three weeks with Rt reaching peaks between 1.40 (1.04-1.85) in Shenzhen City of Guangdong Province and 2.17 (1.69-2.76) in Shandong Province. In all the analyzed locations (n=10) Rt was estimated to be below the epidemic threshold since the end of January.ConclusionOur findings suggest that the strict containment measures and movement restrictions in place may contribute to the interruption of local COVID-19 transmission outside Hubei Province. The shorter serial interval estimated here implies that transmissibility is not as high as initial estimates suggested.


2016 ◽  
Vol 49 ◽  
pp. 224-237 ◽  
Author(s):  
Jianan Yan ◽  
Maoguo Gong ◽  
Lijia Ma ◽  
Shanfeng Wang ◽  
Bo Shen

Sign in / Sign up

Export Citation Format

Share Document