Curvature computations for the intersection curves of hypersurfaces in Euclidean n-space

2021 ◽  
Vol 84 ◽  
pp. 101954
Author(s):  
B. Merih Özçetin ◽  
Mustafa Düldül
Keyword(s):  
Author(s):  
Carmen Popa ◽  
Ivona Petre ◽  
Ruxandra-Elena Bratu

AbstractThe purpose of this paper is to establish the intersection curves between cylinders, using Mathematica program. The equations curves which are inferred by mathematical methods are introduced in this program. This paper takes into discussion the case of four cylinders.


1997 ◽  
Vol 119 (2) ◽  
pp. 275-283 ◽  
Author(s):  
Takashi Maekawa ◽  
Wonjoon Cho ◽  
Nicholas M. Patrikalakis

Self-intersection of offsets of regular Be´zier surface patches due to local differential geometry and global distance function properties is investigated. The problem of computing starting points for tracing self-intersection curves of offsets is formulated in terms of a system of nonlinear polynomial equations and solved robustly by the interval projected polyhedron algorithm. Trivial solutions are excluded by evaluating the normal bounding pyramids of the surface subpatches mapped from the parameter boxes computed by the polynomial solver with a coarse tolerance. A technique to detect and trace self-intersection curve loops in the parameter domain is also discussed. The method has been successfully tested in tracing complex self-intersection curves of offsets of Be´zier surface patches. Examples illustrate the principal features and robustness characteristics of the method.


2016 ◽  
Vol 308 ◽  
pp. 20-38 ◽  
Author(s):  
O. Aléssio ◽  
M. Düldül ◽  
B. Uyar Düldül ◽  
Nassar H. Abdel-All ◽  
Sayed Abdel-Naeim Badr

1987 ◽  
Vol 109 (4) ◽  
pp. 375-380
Author(s):  
Tie-yun Chen ◽  
Wei-min Chen

The geometry of overlapping tubular joints, the equations of intersection curves and the coordinate of the intersection point are introduced first. The variational method for simple tubular joints is extended to the stress analysis of tubular K-joints with overlap. The computer program is compiled. The stress concentration factor and the position of the hot spot of an overlapping joint are found. For the sake of proving the feasibility of our analysis and program, the computed results are compared with experimental data of our photoelastic experiment and other experiments.


Author(s):  
KENNETH ASCHER ◽  
KRISTIN DEVLEMING ◽  
YUCHEN LIU

Abstract We show that the K-moduli spaces of log Fano pairs $\left(\mathbb {P}^1\times \mathbb {P}^1, cC\right)$ , where C is a $(4,4)$ curve and their wall crossings coincide with the VGIT quotients of $(2,4)$ , complete intersection curves in $\mathbb {P}^3$ . This, together with recent results by Laza and O’Grady, implies that these K-moduli spaces form a natural interpolation between the GIT moduli space of $(4,4)$ curves on $\mathbb {P}^1\times \mathbb {P}^1$ and the Baily–Borel compactification of moduli of quartic hyperelliptic K3 surfaces.


2018 ◽  
Vol 25 (6) ◽  
pp. 692-710
Author(s):  
Artem D. Uvarov

In this paper, we consider the key problem of geometric modeling, connected with the construction of the intersection curves of surfaces. Methods for constructing the intersection curves in complex cases are found: by touching and passing through singular points of surfaces. In the first part of the paper, the problem of determining the tangent line of two surfaces given in parametric form is considered. Several approaches to the solution of the problem are analyzed. The advantages and disadvantages of these approaches are revealed. The iterative algorithms for finding a point on the line of tangency are described. The second part of the paper is devoted to methods for overcoming the difficulties encountered in solving a problem for singular points of intersection curves, in which a regular iterative process is violated. Depending on the type of problem, the author dwells on two methods. The first of them suggests finding singular points of curves without using iterative methods, which reduces the running time of the algorithm of plotting the intersection curve. The second method, considered in the final part of the article, is a numerical method. In this part, the author introduces a function that achieves a global minimum only at singular points of the intersection curves and solves the problem of minimizing this function. The application of this method is very effective in some particular cases, which impose restrictions on the surfaces and their arrangement. In conclusion, this method is considered in the case when the function has such a relief, that in the neighborhood of the minimum point the level surfaces are strongly elongated ellipsoids. All the images given in this article are the result of the work of algorithms on methods proposed by the author. Images are built in the author’s software environment.


“Slicing tool” or “Slicing Software” computes the intersection curves of models and slicing planes. They improve the quality of the model being printed when given in the form of STL file. Upon analyzing a specimen that has been printed using two different slicing tools, there was a drastic variation on account of the mechanical properties of the specimen. The ultimate tensile strength and the surface roughness of the material vary from one tool to another. This paper reports an investigation and analysis of the variation in the ultimate tensile strength and the surface roughness of the specimen, given that the 3D printer and the model being printed is the same, with a variation of usage of slicing software. This analysis includes ReplicatorG, Flashprint as the two different slicing tools that are used for slicing of the model. The variation in the ultimate tensile strength and the surface roughness are measured and represented statistically through graphs. An appropriate decisive conclusion was drawn on the basis of the observations and analysis of the experiment on relevance to the behavior and mechanical properties of the specimen.


Sign in / Sign up

Export Citation Format

Share Document