scholarly journals Harmonizing heterogeneous multi-proxy data from lake systems

2021 ◽  
Vol 153 ◽  
pp. 104791
Author(s):  
Gregor Pfalz ◽  
Bernhard Diekmann ◽  
Johann-Christoph Freytag ◽  
Boris K. Biskaborn
Keyword(s):  
2021 ◽  
Author(s):  
Gregor Pfalz ◽  
Bernhard Diekmann ◽  
Johann-Christoph Freytag ◽  
Boris K. Biskaborn

<p>Lake systems play a central role in broadening our knowledge about future trends in the Arctic, as their sediments store information on interactions between climate change, lake ontogeny, external abiotic sediment input, and biodiversity changes. In order to make reliable statements about future lake trajectories, we need sound multi-proxy data from different lakes across the Arctic. Various studies using data from repositories already showed the effectiveness of multi-proxy, multi-site investigations (e.g., Kaufman et al., 2020; PAGES 2k Consortium, 2017). However, there are still datasets from past coring expeditions to Arctic lake systems that are neither included in any of these repositories nor subject to any particular standard. When working with such data from heterogeneous sources, we face the challenge of dealing with data of different format, type, and structure. It is therefore necessary to transform such data into a uniform format to ensure semantic and syntactic comparability. In this talk, we present an interdisciplinary approach by transforming research data from different lake sediment cores into a coherent framework. Our approach adapts methods from the database field, such as developing entity-relationship (ER) diagrams, to understand the conceptual structure of the data independently of the source. Based on this knowledge, we developed a conceptual data model that allows scientists to integrate heterogeneous data into a common database. During the talk, we present further steps to prepare datasets for multi-site statistical investigation. To test our approach, we compiled and transformed a collection of published and unpublished paleolimnological data of Arctic lake systems into our proposed format. Additionally, we show our results from conducting a comparative analysis on a set of acquired data, hereby focusing on comparing total organic carbon and bromine content. We conclude that our harmonized dataset enables numerical inter-proxy and inter-lake comparison despite strong initial heterogeneity.</p><p> </p><p>[1]   D. S. Kaufman et al., “A global database of Holocene paleotemperature records,” Sci. Data, vol. 7, no. 115, pp. 1–34, 2020.</p><p>[2]   PAGES 2k Consortium, “A global multiproxy database for temperature reconstructions of the Common Era,” Sci. Data, vol. 4, no. 170088, pp. 1–33, 2017.</p>


2017 ◽  
Author(s):  
Emily Benayoun ◽  
◽  
Seth A. Young ◽  
Jeremy D. Owens ◽  
Mats E. Eriksson ◽  
...  

2020 ◽  
Author(s):  
Barbara Carrapa ◽  
◽  
Andrea Stevens Goddard ◽  
Scott Meek ◽  
Peter G. DeCelles

2008 ◽  
Vol 27 (25-26) ◽  
pp. 2316-2340 ◽  
Author(s):  
Françoise Gasse ◽  
Françoise Chalié ◽  
Annie Vincens ◽  
Martin A.J. Williams ◽  
David Williamson

Author(s):  
Pramod Kumar ◽  
Ashok Priyadarshan Dimri ◽  
Sampat Kumar Tandon
Keyword(s):  

2021 ◽  
Vol 257 ◽  
pp. 106842
Author(s):  
C.-D. Hillenbrand ◽  
S.J. Crowhurst ◽  
M. Williams ◽  
D.A. Hodell ◽  
I.N. McCave ◽  
...  

2018 ◽  
Vol 14 (6) ◽  
pp. 901-922 ◽  
Author(s):  
Mari F. Jensen ◽  
Aleksi Nummelin ◽  
Søren B. Nielsen ◽  
Henrik Sadatzki ◽  
Evangeline Sessford ◽  
...  

Abstract. Here, we establish a spatiotemporal evolution of the sea-surface temperatures in the North Atlantic over Dansgaard–Oeschger (DO) events 5–8 (approximately 30–40 kyr) using the proxy surrogate reconstruction method. Proxy data suggest a large variability in North Atlantic sea-surface temperatures during the DO events of the last glacial period. However, proxy data availability is limited and cannot provide a full spatial picture of the oceanic changes. Therefore, we combine fully coupled, general circulation model simulations with planktic foraminifera based sea-surface temperature reconstructions to obtain a broader spatial picture of the ocean state during DO events 5–8. The resulting spatial sea-surface temperature patterns agree over a number of different general circulation models and simulations. We find that sea-surface temperature variability over the DO events is characterized by colder conditions in the subpolar North Atlantic during stadials than during interstadials, and the variability is linked to changes in the Atlantic Meridional Overturning circulation and in the sea-ice cover. Forced simulations are needed to capture the strength of the temperature variability and to reconstruct the variability in other climatic records not directly linked to the sea-surface temperature reconstructions. This is the first time the proxy surrogate reconstruction method has been applied to oceanic variability during MIS3. Our results remain robust, even when age uncertainties of proxy data, the number of available temperature reconstructions, and different climate models are considered. However, we also highlight shortcomings of the methodology that should be addressed in future implementations.


2008 ◽  
Vol 21 (9) ◽  
pp. 1948-1962 ◽  
Author(s):  
R. Garcia-Herrera ◽  
D. Barriopedro ◽  
E. Hernández ◽  
H. F. Diaz ◽  
R. R. Garcia ◽  
...  

Abstract The authors present a chronology of El Niño (EN) events based on documentary records from northern Peru. The chronology, which covers the period 1550–1900, is constructed mainly from primary sources from the city of Trujillo (Peru), the Archivo General de Indias in Seville (Spain), and the Archivo General de la Nación in Lima (Peru), supplemented by a reassessment of documentary evidence included in previously published literature. The archive in Trujillo has never been systematically evaluated for information related to the occurrence of El Niño–Southern Oscillation (ENSO). Abundant rainfall and river discharge correlate well with EN events in the area around Trujillo, which is very dry during most other years. Thus, rain and flooding descriptors, together with reports of failure of the local fishery, are the main indicators of EN occurrence that the authors have searched for in the documents. A total of 59 EN years are identified in this work. This chronology is compared with the two main previous documentary EN chronologies and with ENSO indicators derived from proxy data other than documentary sources. Overall, the seventeenth century appears to be the least active EN period, while the 1620s, 1720s, 1810s, and 1870s are the most active decades. The results herein reveal long-term fluctuations in warm ENSO activity that compare reasonably well with low-frequency variability deduced from other proxy data.


Sign in / Sign up

Export Citation Format

Share Document