Numerical analysis of a second order ensemble algorithm for numerical approximation of stochastic Stokes-Darcy equations

Author(s):  
Nan Jiang ◽  
Changxin Qiu

The concept of basic number is applied to the development of a simple analogue of the Sturm–Liouville system of the second order. This is then employed to deduce a family of q -orthogonal functions, which leads to a generalization of the Fourier and Fourier–Bessel expansions. The numerical approximation of basic integrals is discussed and some aspects of the evaluation of C a (q; x) are mentioned. A few of the zeros of this function are listed, and, in conclusion, an indication is given of the possibility of applying the analysis presented in this paper to thé study of stochastic processes and time-series.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Zhifeng Weng ◽  
Langyang Huang ◽  
Rong Wu

In this paper, a second-order accurate (in time) energy stable Fourier spectral scheme for the fractional-in-space Cahn-Hilliard (CH) equation is considered. The time is discretized by the implicit backward differentiation formula (BDF), along with a linear stabilized term which represents a second-order Douglas-Dupont-type regularization. The semidiscrete schemes are shown to be energy stable and to be mass conservative. Then we further use Fourier-spectral methods to discretize the space. Some numerical examples are included to testify the effectiveness of our proposed method. In addition, it shows that the fractional order controls the thickness and the lifetime of the interface, which is typically diffusive in integer order case.


Geophysics ◽  
2006 ◽  
Vol 71 (5) ◽  
pp. T137-T146 ◽  
Author(s):  
D. A. Angus ◽  
C. J. Thomson

In this paper, we review the finite-difference implementation of a narrow-angle, one-way vector wave equation for elastic, 3D media. Extrapolation is performed in the frequency domain, where the second-order-accurate lateral spatial-difference operators are sufficiently accurate for narrow-angle propagation. We perform a numerical analysis of the finite-difference scheme to highlight the stability and dispersion characteristics. The von Neumann stability criterion indicates that extracting a reference phase during the extrapolation step noticeably improves the forward marching scheme, and dispersion analysis shows that numerical grid anisotropy is minimal for the propagation path lengths, source pulse spectral content, and angular range of forward propagation of interest. Although the algorithm is reasonable, its computational efficiency is limited by the second-order-accurate extrapolation step; therefore, the extrapolation scheme can be improved. We extend the Cartesian narrow-angle formulation to curvilinear coordinates, where the computational grid tracks the true wavefront in a reference medium and the wavefield derivative normal to the reference wavefront is evaluated locally using the Cartesian propagator. An example of curvilinear extrapolation for a simple model consisting of a high-velocity sphere within a homogeneous background velocity structure shows that the narrow-angle propagator is capable of modeling frequency-dependent geometric spreading and diffraction effects in curvilinear coordinates.


Author(s):  
Maurício Castelo Branco de Noronha Campos ◽  
Paulo Marcelo Vieira Ribeiro ◽  
Romilde Almeida de Oliveira

abstract: This study addresses a numerical analysis of reinforced concrete columns in which the lengths are significantly larger than their widths with a rectangular cross section. Numerical simulations of 1,440 cases were performed, each case simulated with the single bar model, isolated bar model and mesh model, in addition, 3D model simulations were carried out. For the validation of 3D models and bar models, comparisons were made between the numerical simulation e experimental results of 24 reinforced concrete columns. Second order effects were analyzed on the vertical moment at the edge of the columns in which the lengths are significantly larger than the widths (localized second-order effects) and also the values of the horizontal moments along the cross sectional length in the mesh model. Influences of the main variables were observed influencing the behavior of the columns in which the lengths are significantly larger than their widths: the ratio between the cross sectional dimensions, the slenderness and the stresses (normal stress and bending moment around the axis of greatest inertia).


Author(s):  
Y. Skwame ◽  
J. Sabo ◽  
M. Mathew

A general one-step hybrid block method with equidistant of order 6 has been successfully developed for the direct solution of second order IVPs in this article. Numerical analysis shows that the developed method is consistent and zero-stable which implies its convergence. The analysis of the new method is examined on two highly and mildly stiff second-order initial value problems to illustrate the efficiency of the method. It is obvious that our method performs better than the existing method within which we compare our result with. Hence, the approach is an adequate one for solving special second order IVPs.


2020 ◽  
Vol 31 (07) ◽  
pp. 2050097
Author(s):  
Jianzhong Chen ◽  
Ronghui Liu ◽  
Yanmei Hu

Traffic flow models are important tools for traffic management applications such as traffic incident detection and traffic control. In this paper, we propose a novel numerical approximation method for second-order macroscopic traffic flow models. The method is based on the semi-discrete central-upwind numerical flux and high-order reconstructions for spatial discretizations. We then apply the designed high-resolution schemes to three representative types of second-order traffic flow models and perform a variety of numerical experiments to validate the proposed methods. The simulation results illustrate the effectiveness, simplicity and universality of the central-upwind scheme as numerical approximation method for macroscopic traffic flow models.


Sign in / Sign up

Export Citation Format

Share Document