scholarly journals On the energetic balance for the flow of an Oldroyd-B fluid due to a flat plate subject to a time-dependent shear stress

2010 ◽  
Vol 60 (1) ◽  
pp. 74-82 ◽  
Author(s):  
C. Fetecau ◽  
J. Zierep ◽  
R. Bohning ◽  
Corina Fetecau
Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3070
Author(s):  
Fernanda Bessa Ferreira ◽  
Paulo M. Pereira ◽  
Castorina Silva Vieira ◽  
Maria de Lurdes Lopes

Geosynthetic-reinforced soil structures have been used extensively in recent decades due to their significant advantages over more conventional earth retaining structures, including the cost-effectiveness, reduced construction time, and possibility of using locally-available lower quality soils and/or waste materials, such as recycled construction and demolition (C&D) wastes. The time-dependent shear behaviour at the interfaces between the geosynthetic and the backfill is an important factor affecting the overall long-term performance of such structures, and thereby should be properly understood. In this study, an innovative multistage direct shear test procedure is introduced to characterise the time-dependent response of the interface between a high-strength geotextile and a recycled C&D material. After a prescribed shear displacement is reached, the shear box is kept stationary for a specific period of time, after which the test proceeds again, at a constant displacement rate, until the peak and large-displacement shear strengths are mobilised. The shear stress-shear displacement curves from the proposed multistage tests exhibited a progressive decrease in shear stress with time (stress relaxation) during the period in which the shear box was restrained from any movement, which was more pronounced under lower normal stress values. Regardless of the prior interface shear displacement and duration of the stress relaxation stage, the peak and residual shear strength parameters of the C&D material-geotextile interface remained similar to those obtained from the conventional (benchmark) tests carried out under constant displacement rate.


1970 ◽  
Vol 92 (1) ◽  
pp. 138-142 ◽  
Author(s):  
J. H. Rumbarger ◽  
R. C. Herrick ◽  
P. R. Eklund

This paper presents the analysis of the stress field in a hollow sphere in the vicinity of the contact area. The sphere is subjected to a normal load applied through a flat plate. The elastic contact shape and extent are developed for a load of 1000 lb applied to a 1-in-dia hollow ball with a 0.08-in-thick wall. Hollow ball shell bending stresses have a significant effect upon the subsurface stress field. Fatigue life estimates for the hollow ball vary significantly depending upon the selection of decisive stress amplitude. Comparison of the maximum value and location of the reversing orthogonal subsurface shear stress with solid ball data according to the Lundberg-Palmgren dynamic life theory predicts a 91.6 percent life reduction for the hollow ball contact. The use of the unidirectional subsurface shear stress results in a prediction of hollow ball contact life over 30 times the solid ball contact life.


1967 ◽  
Vol 89 (4) ◽  
pp. 362-370 ◽  
Author(s):  
M. Soliman ◽  
H. A. Johnson

An approximate analysis and experimental data are presented for the transient mean wall temperature of a flat plate of appreciable thermal capacity, heated by a step in the heat generation rate and cooled on both sides by a steady, incompressible turbulent flow with a Prandtl number of unity. Theory and experiments are in agreement over a range of Reynolds numbers 5 × 105 ≤ ReL ≤ 2 × 106. The experimental mean heat transfer coefficient is observed to go through a dip to a minimum before reaching the steady state. This dip is found to be due to the conjunction of a large wall thermal capacity and a sufficiently high flow velocity.


Fluids ◽  
2018 ◽  
Vol 3 (2) ◽  
pp. 25 ◽  
Author(s):  
Cortes Williams ◽  
Olufemi Kadri ◽  
Roman Voronov ◽  
Vassilios Sikavitsas

Author(s):  
Takuma Katayama ◽  
Shinsuke Mochizuki

The present experiment focuses on the vorticity diffusion in a stronger wall jet managed by a three-dimensional flat plate wing in the outer layer. Measurement of the fluctuating velocities and vorticity correlation has been carried out with 4-wire vorticity probe. The turbulent vorticity diffusion due to the large scale eddies in the outer layer is quantitatively examined by using the 4-wire vorticity probe. Quantitative relationship between vortex structure and Reynolds shear stress is revealed by means of directly measured experimental evidence which explains vorticity diffusion process and influence of the manipulating wing. It is expected that the three-dimensional outer layer manipulator contributes to keep convex profile of the mean velocity, namely, suppression of the turbulent diffusion and entrainment.


1993 ◽  
Vol 265 (2) ◽  
pp. H553-H561 ◽  
Author(s):  
C. Alonso ◽  
A. R. Pries ◽  
P. Gaehtgens

The time-dependent flow behavior of normal human blood after a sudden reduction of wall shear stress from 5,000 mPa to a low level (2-100 mPa) was studied during perfusion of vertical tubes (internal diam 28-101 microns) at constant driving pressures. Immediately after the implementation of low-shear flow conditions the concentration of red blood cells (RBCs) near the tube wall started to decrease, and marginal plasma spaces developed as a result of the assembly of RBC aggregates. This was associated with a time-dependent increase of flow velocity by up to 200% within 300 s, reflecting a reduction of apparent viscosity. These time-dependent changes of flow behavior increased strongly with decreasing wall shear stress and with increasing tube diameter. A correlation between the width of the marginal plasma layer and relative apparent viscosity was obtained for every condition of tube diameter, wall shear stress, and time. Time-dependent changes of blood rheological properties could be relevant in the circulation, where the blood is exposed to rapid and repeated transitions from high-shear flow conditions in the arterial and capillary system to low-shear conditions in the venous system.


2011 ◽  
Vol 354-355 ◽  
pp. 179-182
Author(s):  
Chun Rui Li ◽  
Lian Cun Zheng ◽  
Xin Xin Zhang ◽  
Jia Jia Niu

This paper presented an analysis for the couette flow of a generalized Oldroyd-B fluid within an infinite cylinder subject to a time-dependent shear stress with the influence of the internal constantly decelerated pressure gradient. The exact solutions are established by means of the combine of the sequential fractional derivatives Laplace transform and finite Hankel transform and presented by integral and series form in terms of the Mittag-Leffler function. Moreover, the effects of various parameters are analyzed in detail by graphical illustrations.


Sign in / Sign up

Export Citation Format

Share Document