Turbulent Vorticity Diffusion in the Stronger Wall Jet Managed by a Flat Plate Wing in the Outer Layer

Author(s):  
Takuma Katayama ◽  
Shinsuke Mochizuki

The present experiment focuses on the vorticity diffusion in a stronger wall jet managed by a three-dimensional flat plate wing in the outer layer. Measurement of the fluctuating velocities and vorticity correlation has been carried out with 4-wire vorticity probe. The turbulent vorticity diffusion due to the large scale eddies in the outer layer is quantitatively examined by using the 4-wire vorticity probe. Quantitative relationship between vortex structure and Reynolds shear stress is revealed by means of directly measured experimental evidence which explains vorticity diffusion process and influence of the manipulating wing. It is expected that the three-dimensional outer layer manipulator contributes to keep convex profile of the mean velocity, namely, suppression of the turbulent diffusion and entrainment.

2008 ◽  
Vol 606 ◽  
pp. 27-49 ◽  
Author(s):  
I. ALBAYRAK ◽  
E. J. HOPFINGER ◽  
U. LEMMIN

Experimental results are presented of the mean flow and turbulence characteristics in the near field of a plane wall jet issuing from a nozzle onto flat and concave walls consisting of fixed sand beds. This is a flow configuration of interest for sediment erosion, also referred to as scouring. The measurements were made with an acoustic profiler that gives access to the three components of the instantaneous velocities. For the flat-wall flow, it is shown that the outer-layer spatial growth rate and the maxima of the Reynolds stresses approach the values accepted for the far field of a wall jet at a downstream distance x/b0 ≈ 8. These maxima are only about half the values of a plane free jet. This reduction in Reynolds stresses is also observed in the shear-layer region, x/b0 < 6, where the Reynolds shear stress is about half the value of a free shear layer. At distances x/b0 > 11, the maximum Reynolds shear stress approaches the value of a plane free jet. This change in Reynolds stresses is related to the mean vertical velocity that is negative for x/b0 < 8 and positive further downstream. The evolution of the inner region of the wall jet is found to be in good agreement with a previous model that explicitly includes the roughness length.On the concave wall, the mean flow and the Reynolds stresses are drastically changed by the adverse pressure gradient and especially by the development of Görtler vortices. On the downslope side of the scour hole, the flow is nearly separating with the wall shear stress tending to zero, whereas on the upslope side, the wall-friction coefficient is increased by a factor of about two by Görtler vortices. These vortices extend well into the outer layer and, just above the wall, cause a substantial increase in Reynolds shear stress.


2018 ◽  
Vol 857 ◽  
pp. 345-373 ◽  
Author(s):  
Davide Gatti ◽  
Andrea Cimarelli ◽  
Yosuke Hasegawa ◽  
Bettina Frohnapfel ◽  
Maurizio Quadrio

This paper addresses the integral energy fluxes in natural and controlled turbulent channel flows, where active skin-friction drag reduction techniques allow a more efficient use of the available power. We study whether the increased efficiency shows any general trend in how energy is dissipated by the mean velocity field (mean dissipation) and by the fluctuating velocity field (turbulent dissipation). Direct numerical simulations (DNS) of different control strategies are performed at constant power input (CPI), so that at statistical equilibrium, each flow (either uncontrolled or controlled by different means) has the same power input, hence the same global energy flux and, by definition, the same total energy dissipation rate. The simulations reveal that changes in mean and turbulent energy dissipation rates can be of either sign in a successfully controlled flow. A quantitative description of these changes is made possible by a new decomposition of the total dissipation, stemming from an extended Reynolds decomposition, where the mean velocity is split into a laminar component and a deviation from it. Thanks to the analytical expressions of the laminar quantities, exact relationships are derived that link the achieved flow rate increase and all energy fluxes in the flow system with two wall-normal integrals of the Reynolds shear stress and the Reynolds number. The dependence of the energy fluxes on the Reynolds number is elucidated with a simple model in which the control-dependent changes of the Reynolds shear stress are accounted for via a modification of the mean velocity profile. The physical meaning of the energy fluxes stemming from the new decomposition unveils their inter-relations and connection to flow control, so that a clear target for flow control can be identified.


2009 ◽  
Vol 628 ◽  
pp. 371-394 ◽  
Author(s):  
D. C. ROACH ◽  
A. G. L. HOLLOWAY

This paper describes an experiment in which a uniformly sheared turbulence was subjected to simultaneous streamwise flow curvature and rotation about the streamwise axis. The distortion of the turbulence is complex but well defined and may serve as a test case for turbulence model development. The uniformly sheared turbulence was developed in a straight wind tunnel and then passed into a curved tunnel section. At the start of the curved section the plane of the mean shear was normal to the plane of curvature so as to create a three-dimensional or ‘out of plane’ curvature configuration. On entering the curved tunnel, the flow developed a streamwise mean vorticity that rotated the mean shear about the tunnel centreline through approximately 70°, so that the shear was nearly in the plane of curvature and oriented so as to have a stabilizing effect on the turbulence. Hot wire measurements of the mean velocity, mean vorticity, mean rate of strain and Reynolds stress anisotropy development along the wind tunnel centreline are reported. The observed effect of the mean shear rotation on the turbulence was to diminish the shear stress in the plane normal to the plane of curvature while generating non-zero values of the shear stress in the plane of curvature. A rotating frame was identified for which the measured mean velocity field took the form of a simple shear flow. The turbulence anisotropy was transformed to this frame to estimate the effects of frame rotation on the structure of sheared turbulence.


2016 ◽  
Vol 801 ◽  
pp. 670-703 ◽  
Author(s):  
Hangjian Ling ◽  
Siddarth Srinivasan ◽  
Kevin Golovin ◽  
Gareth H. McKinley ◽  
Anish Tuteja ◽  
...  

Digital holographic microscopy is used for characterizing the profiles of mean velocity, viscous and Reynolds shear stresses, as well as turbulence level in the inner part of turbulent boundary layers over several super-hydrophobic surfaces (SHSs) with varying roughness/texture characteristics. The friction Reynolds numbers vary from 693 to 4496, and the normalized root mean square values of roughness $(k_{rms}^{+})$ vary from 0.43 to 3.28. The wall shear stress is estimated from the sum of the viscous and Reynolds shear stress at the top of roughness elements and the slip velocity is obtained from the mean profile at the same elevation. For flow over SHSs with $k_{rms}^{+}<1$, drag reduction and an upward shift of the mean velocity profile occur, along with a mild increase in turbulence in the inner part of the boundary layer. As the roughness increases above $k_{rms}^{+}\sim 1$, the flow over the SHSs transitions from drag reduction, where the viscous stress dominates, to drag increase where the Reynolds shear stress becomes the primary contributor. For the present maximum value of $k_{rms}^{+}=3.28$, the inner region exhibits the characteristics of a rough wall boundary layer, including elevated wall friction and turbulence as well as a downward shift in the mean velocity profile. Increasing the pressure in the test facility to a level that compresses the air layer on the SHSs and exposes the protruding roughness elements reduces the extent of drag reduction. Aligning the roughness elements in the streamwise direction increases the drag reduction. For SHSs where the roughness effect is not dominant ($k_{rms}^{+}<1$), the present measurements confirm previous theoretical predictions of the relationships between drag reduction and slip velocity, allowing for both spanwise and streamwise slip contributions.


1995 ◽  
Vol 290 ◽  
pp. 225-262 ◽  
Author(s):  
Semİh M. Ölçmen ◽  
Roger L. Simpson

A three-dimensional, pressure-driven turbulent boundary layer created by an idealized wing–body junction flow was studied experimentally. The data presented include time-mean static pressure and directly measured skin-friction magnitude on the wall. The mean velocity and all Reynolds stresses from a three-velocity-component fibre-optic laser-Doppler anemometer are presented at several stations along a line determined by the mean velocity vector component parallel to the wall in the layer where the $\overline{u^2}$ kinematic normal stress is maximum (normal-stress coordinate system). This line was selected by intuitively reasoning that overlap of the near-wall flow and outer-region flow occurs at the location where $\overline{u^2}$ is maximum. Along this line the flow is subjected to a strong crossflow pressure gradient, which changes sign for the downstream stations. The shear-stress vector direction in the flow lags behind the flow gradient vector direction. The flow studied here differs from many other experimentally examined three-dimensional flows in that the mean flow variables depend on three spatial axes rather than two axes, such as flows in which the three-dimensionality of the flow has been generated either by a rotating cylinder or by a pressure gradient in one direction only throughout the flow.The data show that the eddy viscosity of the flow is not isotropic. These and other selected data sets show that the ratio of spanwise to streamwise eddy viscosities in the wall-shear-stress coordinate system is less scattered and more constant (about 0.6) than in the local free-stream coordinate system or the normal stress coordinate system. For y+ > 50 and y/δ < 0.8, the ratio of the magnitude of the kinematic shear stress |τ/ρ| to the kinematic normal stress $\overline{v^2}$ is approximately a constant for three-dimensional flow stations of both shear-driven and pressure-driven three-dimensional flows. In the same region, the ratio of the kinematic shear stresses $-\overline{vw}/-\overline{uw}$ appears to be a function of y+ in wall-stress coordinates for three-dimensional pressure-driven flows.


Author(s):  
Hugo D. Pasinato ◽  
Ezequiel Arthur Krumrick

Abstract This research uses data from direct numerical simulation (DNS) to characterize the different errors associated with a Reynolds-averaged Navier-Stokes (RANS) simulation. The statistics from DNS (Reynolds stresses, kinetic energy of turbulence, $\kappa$, and dissipation of turbulence, $\epsilon$), are fed into a RANS simulation with the same Reynolds number, geometry, and numerical code used for DNS. Three integral metrics error based on the mean velocity, the moduli of the mean rate-of-strain tensor, and the wall shear stress are used to characterize the errors associated with the RANS technique, with the RANS model, and with the linear eddy viscosity model (LEVM). For developed and perturbed flow, it is found that the mean velocity of the RANS simulations with the DNS statistics is almost the same as the mean velocity from DNS data. This procedure enables the study of the relative importance of the different Reynolds stresses in a particular flow. It is shown that for the bounded perturbed turbulent flows studied here, almost all the necessary effects of turbulence are contained in the Reynolds shear stress.


1978 ◽  
Vol 86 (1) ◽  
pp. 179-200 ◽  
Author(s):  
J. C. R. Hunt ◽  
C. J. Abell ◽  
J. A. Peterka ◽  
H. Woo

In flows around three-dimensional surface obstacles in laminar or turbulent streamsthere are a number of points where the shear stress or where two or more component,s of the mean velocity are zero. In the first part of this paper we summarize and extend the kinematical theory for the flow near these points, particularly by emphasizing the topological classification of these points as nodes or saddles. We show that the zero-shear-stress points on the surface and on the obstacle must be such that the sum of the nodes ΣNand the sum of the saddles Σssatisfy\[ \Sigma_N -\Sigma_S = 0. \]If the obstacle has a hole through it, such as a passageway under a building,\[ \Sigma_N -\Sigma_S =-2. \]If the surface is a junction between two pipes,\[ \Sigma_N -\Sigma_S =-1. \]We also consider, in two-dimensional plane sections of the flow, the points where the components of the mean velocity parallel to the planes are zero, both in the flow and near surfaces cutting the sections. The latter points are half-nodes N′ or half-saddles S′. We find that\[ (\Sigma_N +{\textstyle\frac{1}{2}}\Sigma_{N^{\prime}}-(\Sigma_{S^{\prime}}+{\textstyle\frac{1}{2}}\Sigma_{S^{\prime}}) = 1-n, \]where n is the connectivity of the section of the flow considered.In the second part new flow-visualization studies of laminar and turbulent flows around cuboids and axisymmetric humps (i.e. model hills) are reported. A new method of obtaining a high resolution of the surface shear-stress lines was used. These studies show how enumerating the nodes and saddle points acts as a check on the inferred flow pattern.Two specific conclusions drawn from these studies are that:for all the flows we observed, there are no closed surfaces of mean streamlines around the separated flows behind three-dimensional surface obstacles, which con-tradicts most of the previous suggestions for such flows (e.g. Halitsky 1968);the separation streamline on the centre-line of a three-dimensional bluff obstacle does not, in general, reattach to the surface.


1982 ◽  
Vol 119 ◽  
pp. 121-153 ◽  
Author(s):  
Udo R. Müller

An experimental study of a steady, incompressible, three-dimensional turbulent boundary layer approaching separation is reported. The flow field external to the boundary layer was deflected laterally by turning vanes so that streamwise flow deceleration occurred simultaneous with cross-flow acceleration. At 21 stations profiles of the mean-velocity components and of the six Reynolds stresses were measured with single- and X-hot-wire probes, which were rotatable around their longitudinal axes. The calibration of the hot wires with respect to magnitude and direction of the velocity vector as well as the method of evaluating the Reynolds stresses from the measured data are described in a separate paper (Müller 1982, hereinafter referred to as II). At each measuring station the wall shear stress was inferred from a Preston-tube measurement as well as from a Clauser chart. With the measured profiles of the mean velocities and of the Reynolds stresses several assumptions used for turbulence modelling were checked for their validity in this flow. For example, eddy viscosities for both tangential directions and the corresponding mixing lengths as well as the ratio of resultant turbulent shear stress to turbulent kinetic energy were derived from the data.


Water ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 237
Author(s):  
Ming Chen ◽  
Haijin Huang ◽  
Xingxing Zhang ◽  
Senpeng Lv ◽  
Rengmin Li

Three-dimensional (3D) confined wall jets have various engineering applications related to efficient energy dissipation. This paper presents experimental measurements of mean flow development for a 3D rectangular wall jet confined by a vertical baffle with a fixed distance (400 mm) from its surface to the nozzle. Experiments were performed at three different Reynolds numbers of 8333, 10,000 and 11,666 based on jet exit velocity and square root of jet exit area (named as B), with water depth of 100 mm. Detailed measurements of current jet were taken using a particle image velocimetry technique. The results indicate that the confined jet seems to behave like an undisturbed jet until 16B downstream. Beyond this position, however, the mean flow development starts to be gradually affected by the baffle confinement. The baffle increases the decay and spreading of the mean flow from 16B to 23B. The decay rate of 1.11 as well as vertical and lateral growth rates of 0.04 and 0.19, respectively, were obtained for the present study, and also fell well within the range of values which correspond to the results in the radial decay region for the unconfined case. In addition, the measurements of the velocity profiles, spreading rates and velocity decay were also found to be independent of Reynolds number. Therefore, the flow field in this region appears to have fully developed at least 4B earlier than the unconfined case. Further downstream (after 23B), the confinement becomes more pronounced. The vertical spreading of current jet shows a distinct increase, while the lateral growth was found to be decreased significantly. It can be also observed that the maximum mean velocity decreases sharply close to the baffle.


1974 ◽  
Vol 64 (4) ◽  
pp. 763-774 ◽  
Author(s):  
R. G. Deissler

The early and intermediate development of a highly accelerated (or decelerated) turbulent boundary layer is analysed. For sufficiently large accelerations (or pressure gradients) and for total normal strains which are not excessive, the equation for the Reynolds shear stress simplifies to give a stress that remains approximately constant as it is convected along streamlines. The theoretical results for the evolution of the mean velocity in favourable and adverse pressure gradients agree well with experiment for the cases considered. A calculation which includes mass injection at the wall is also given.


Sign in / Sign up

Export Citation Format

Share Document