MMP1 promotes tumor growth and metastasis in esophageal squamous cell carcinoma

2016 ◽  
Vol 377 (1) ◽  
pp. 97-104 ◽  
Author(s):  
Min Liu ◽  
Yi Hu ◽  
Mei-Fang Zhang ◽  
Kong-Jia Luo ◽  
Xiu-Ying Xie ◽  
...  
Author(s):  
Xiaobin Guo ◽  
Rui Zhu ◽  
Aiping Luo ◽  
Honghong Zhou ◽  
Fang Ding ◽  
...  

Abstract Background Overexpression of eukaryotic translation initiation factor 3H (EIF3H) predicts cancer progression and poor prognosis, but the mechanism underlying EIF3H as an oncogene remains unclear in esophageal squamous cell carcinoma (ESCC). Methods TCGA database and the immunohistochemistry (IHC) staining of ESCC samples were used and determined the upregulation of EIF3H in ESCC. CCK8 assay, colony formation assay and transwell assay were performed to examine the ability of cell proliferation and mobility in KYSE150 and KYSE510 cell lines with EIF3H overexpression or knockdown. Xenograft and tail-vein lung metastatic mouse models of KYSE150 cells with or without EIF3H knockdown were also used to confirm the function of EIF3H on tumor growth and metastasis in vivo. A potential substrate of EIF3H was screened by co-immunoprecipitation assay (co-IP) combined with mass spectrometry in HEK293T cells. Their interaction and co-localization were confirmed using reciprocal co-IP and immunofluorescence staining assay. The function of EIF3H on Snail ubiquitination and stability was demonstrated by the cycloheximide (CHX) pulse-chase assay and ubiquitination assay. The correlation of EIF3H and Snail in clinical ESCC samples was verified by IHC. Results We found that EIF3H is significantly upregulated in esophageal cancer and ectopic expression of EIF3H in ESCC cell lines promotes cell proliferation, colony formation, migration and invasion. Conversely, genetic inhibition of EIF3H represses ESCC tumor growth and metastasis in vitro and in vivo. Moreover, we identified EIF3H as a novel deubiquitinating enzyme of Snail. We demonstrated that EIF3H interacts with and stabilizes Snail through deubiquitination. Therefore, EIF3H could promote Snail-mediated EMT process in ESCC. In clinical ESCC samples, there is also a positive correlation between EIF3H and Snail expression. Conclusions Our study reveals a critical EIF3H-Snail signaling axis in tumor aggressiveness in ESCC and provides EIF3H as a promising biomarker for ESCC treatment.


2020 ◽  
Author(s):  
Hu Zhang ◽  
Enchun Pan ◽  
Ying Zhang ◽  
Chao Zhao ◽  
Qiwei Liu ◽  
...  

Abstract Background: Long noncoding RNAs (lncRNAs) are abnormally expressed in a broad type of cancers and play significant roles that regulate tumor development and metastasis. However, the pathological roles of lncRNAs in esophageal squamous cell carcinoma (ESCC) remain largely unknown. Here we aimed to investigate the role and regulatory mechanism of the novel lncRPL34-AS1 in the development and progression of ESCC. Methods: The expression level of lncRPL34-AS1 in ESCC tissues and different cell lines was determined by quantitative real-time PCR (RT-qPCR). Chromatin immunoprecipitation (ChIP) assay was used to evaluate the regulatory effect of histone modification on lncRPL34-AS1. Then, functional experiments in vitro and in vivo were employed to explore the effects of lncRPL34-AS1 on tumor growth and metastasis in ESCC. Mechanistically, fluorescence in situ hybridization (FISH), bioinformatics analyses, luciferase reporter assay, RNA immunoprecipitation (RIP) assay and western blot assays were used to detect the regulatory relationship between lncRPL34-AS1, miR-575 and ACAA2. In addition, comprehensive identification of RNA binding proteins (ChIRP), mass spectrometry, and RIP assay were used to identify lncRPL34-AS1-interacting proteins.Results: LncRPL34-AS1 was significantly down-regulated in ESCC tissues and cells, which was negatively correlated with overall survival in ESCC patients. The chromatin immunoprecipitation (ChIP) assays indicated that gain of H3K4me3 and H3K27 acetylation-activated lncRPL34-AS1 was down-regulated in ESCC. Functionally, upregulation of lncRPL34-AS1 dramatically suppressed ESCC cell proliferation, colony formation, cell cycle progression and induced apoptosis in vitro, whereas knockdown of lncRPL34-AS1 elicited the opposite function. Consistently, overexpression of lncRPL34-AS1 inhibited tumor growth and metastasis in vivo. Mechanistically, lncRPL34-AS1 acted as competing endogenous RNA (ceRNA) of miR-575 to relieve the repressive effect of miR-575 on its target ACAA2, then suppressed the tumorigenesis of ESCC. In addition, protein ALOX12B and CAT resulted direct binding targets of lncRPL34‐AS1 and affected biological process in ESCC. Conclusions: Together, our results reveal a role for lncRPL34-AS1 in ESCC tumorigenesis and may provide a strategy for using lncRPL34-AS1 as a potential biomarker and a therapeutic target for patients with ESCC.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Xiaoyong Li ◽  
Laichun Song ◽  
Bo Wang ◽  
Chao Tao ◽  
Lei Shi ◽  
...  

Abstract Background Circular RNAs (circRNAs) have been discovered to participate in the carcinogenesis of multiple cancers. However, the role of circRNAs in esophageal squamous cell carcinoma (ESCC) progression is yet to be properly understood. This research aimed to investigate and understand the mechanism used by circRNAs to regulate ESCC progression. Methods Bioinformatics analysis was first performed to screen dysregulated circRNAs and differentially expressed genes in ESCC. The ESCC tissue samples and adjacent normal tissue samples utilized in this study were obtained from 36 ESCC patients. All the samples were subjected to qRT-PCR analysis to identify the expression of TXNRD1, circRNAs, and miR-1305. Luciferase reporter assay, RNA immunoprecipitation assay and RNA pull-down assay were later conducted to verify the existing relationship among circ0120816, miR-1305 and TXNRD1. CCK-8, BrdU, cell adhesion, cell cycle, western blot and caspase 3 activity assays were also employed to evaluate the regulation of these three biological molecules in ESCC carcinogenesis. To evaluate the effect of circ0120816 on ESCC tumor growth and metastasis, the xenograft mice model was constructed. Results Experimental investigations revealed that circ0120816 was the highest upregulated circRNA in ESCC tissues and that this non-coding RNA acted as a miR-1305 sponge in enhancing cell viability, cell proliferation, and cell adhesion as well as repressing cell apoptosis in ESCC cell lines. Moreover, miR-1305 was observed to exert a tumor-suppressive effect in ESCC cells by directly targeting and repressing TXNRD1. It was also noticed that TXNRD1 could regulate cyclin, cell adhesion molecule, and apoptosis-related proteins. Furthermore, silencing circ0120816 was found to repress ESCC tumor growth and metastasis in vivo. Conclusions This research confirmed that circ0120816 played an active role in promoting ESCC development by targeting miR-1305 and upregulating oncogene TXNRD1.


2020 ◽  
Author(s):  
Xiaoyong Li ◽  
Laichun Song ◽  
Bo Wang ◽  
Chao Tao ◽  
Lei Shi ◽  
...  

Abstract Background: Circular RNAs (circRNAs) have been discovered to participate in the carcinogenesis of multiple cancers. However, the role of circRNAs in esophageal squamous cell carcinoma (ESCC) progression is yet to be properly understood. This research aimed to investigate and understand the mechanism used by circRNAs to regulate ESCC progression.Methods: Bioinformatics analysis was first performed to screen dysregulated circRNAs and differentially expressed genes in ESCC. The ESCC tissue samples and adjacent normal tissue samples utilized in this study were obtained from 36 ESCC patients. All the samples were subjected to qRT-PCR analysis to identify the expression of TXNRD1, circRNAs, and miR-1305. Luciferase reporter assay, RNA immunoprecipitation assay and RNA pull-down assay were later conducted to verify the existing relationship among circ0120816, miR-1305 and TXNRD1. CCK-8, BrdU, cell adhesion, cell cycle, western blot and caspase 3 activity assays were also employed to evaluate the regulation of these three biological molecules in ESCC carcinogenesis. To evaluate the effect of circ0120816 on ESCC tumor growth and metastasis, the xenograft mice model was constructed. Results: Experimental investigations revealed that circ0120816 was the highest upregulated circRNA in ESCC tissues and that this non-coding RNA acted as a miR-1305 sponge in enhancing cell viability, cell proliferation, and cell adhesion as well as repressing cell apoptosis in ESCC cell lines. Moreover, miR-1305 was observed to exert a tumor-suppressive effect in ESCC cells by directly targeting and repressing TXNRD1. It was also noticed that TXNRD1 could regulate cyclin, cell adhesion molecule, and apoptosis-related proteins. Furthermore, silencing circ0120816 was found to repress ESCC tumor growth and metastasis in vivo.Conclusions: This research confirmed that circ0120816 played an active role in promoting ESCC development by targeting miR-1305 and upregulating oncogene TXNRD1.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Bin Wang ◽  
Peiyan Hua ◽  
Ruimin Wang ◽  
Jindong Li ◽  
Guangxin Zhang ◽  
...  

Abstract Objective Esophageal squamous cell carcinoma (ESCC) is featured by early metastasis and late diagnosis. MicroRNA-301 (miR-301) is known to participate in diverse cancers. Nevertheless, effects of miR-301 on ESCC remain unexplored. Thus, we aim to explore the role of miR-301 in ESCC progression. Methods Expression of miR-301 and phosphatase and tensin homologue (PTEN) in ESCC tissues and cell lines was assessed. Next, the screened cells were treated with altered miR-301 or PTEN oligonucleotide and plasmid, and then, the colony formation ability, cell viability, migration, invasion, cell cycle distribution and apoptosis of ESCC cells were assessed. Moreover, tumor growth and microvessel density (MVD) were also assessed, and the targeting relationship between miR-301 and PTEN was affirmed. Results MiR-301 was upregulated, and PTEN was downregulated in ESCC tissues and cells. KYSE30 cells and Eca109 cells were selected for functional assays. In KYSE30 cells, inhibited miR-301 or overexpressed PTEN suppressed cell malignant behaviors, and silenced PTEN eliminated the impact of miR-301 inhibition on ESCC progression. In Eca109 cells, miR-301 overexpression or PTEN inhibition promoted cell malignant behaviors, and PTEN overexpression reversed the effects of miR-301 elevation on ESCC progression. The in vivo assay revealed that miR-301 inhibition or PTEN overexpression repressed ESCC tumor growth and MVD, and miR-301 elevation or PTEN reduction had contrary effects. Moreover, PTEN was targeted by miR-301. Conclusion Taken together, results in our study revealed that miR-301 affected cell growth, metastasis and angiogenesis via regulating PTEN expression in ESCC.


Sign in / Sign up

Export Citation Format

Share Document