scholarly journals Metabolomics of neonatal blood spots reveal distinct phenotypes of pediatric acute lymphoblastic leukemia and potential effects of early-life nutrition

2019 ◽  
Vol 452 ◽  
pp. 71-78 ◽  
Author(s):  
Lauren M. Petrick ◽  
Courtney Schiffman ◽  
William M.B. Edmands ◽  
Yukiko Yano ◽  
Kelsi Perttula ◽  
...  
Blood ◽  
2000 ◽  
Vol 96 (1) ◽  
pp. 264-268 ◽  
Author(s):  
Tomohito Yagi ◽  
Shigeyoshi Hibi ◽  
Yasuhiro Tabata ◽  
Kikuko Kuriyama ◽  
Tomoko Teramura ◽  
...  

Abstract An attractive hypothesis is that in utero exposure of hematopoietic cells to oncogenic agents can induce molecular changes leading to overt acute lymphoblastic leukemia (ALL) in infants and perhaps older children as well. Although supported by studies of identical infant twins with concordant leukemia, and of nontwined patients withMLL gene rearrangements, this concept has not been extended to the larger population of B-lineage ALL patients who lack unique nonconstitutive mutations or abnormally rearranged genes. We therefore sought to demonstrate a prenatal origin for 7 cases of B-cell precursor ALL (either CD10+ or CD10−) that had been diagnosed in infants and children 14 days to 9 years of age. Using a polymerase chain reaction–based assay, we identified the same clonotypic immunoglobulin heavy-chain complementarity determining region or T-cell receptor VD2-DD3 sequences in the neonatal blood spots (Guthrie card) and leukemic cell DNAs of 2 infants with CD10− ALL and 2 of the 5 older patients with CD10+ ALL. Nucleotide sequencing showed a paucity of N or P regions and shortened D germ line and conserved J sequences, indicative of cells arising from fetal hematopoiesis. Our findings strongly suggest a prenatal origin for some cases of B-cell precursor ALL lacking specific clonotypic abnormalities.


Blood ◽  
2000 ◽  
Vol 96 (1) ◽  
pp. 264-268 ◽  
Author(s):  
Tomohito Yagi ◽  
Shigeyoshi Hibi ◽  
Yasuhiro Tabata ◽  
Kikuko Kuriyama ◽  
Tomoko Teramura ◽  
...  

An attractive hypothesis is that in utero exposure of hematopoietic cells to oncogenic agents can induce molecular changes leading to overt acute lymphoblastic leukemia (ALL) in infants and perhaps older children as well. Although supported by studies of identical infant twins with concordant leukemia, and of nontwined patients withMLL gene rearrangements, this concept has not been extended to the larger population of B-lineage ALL patients who lack unique nonconstitutive mutations or abnormally rearranged genes. We therefore sought to demonstrate a prenatal origin for 7 cases of B-cell precursor ALL (either CD10+ or CD10−) that had been diagnosed in infants and children 14 days to 9 years of age. Using a polymerase chain reaction–based assay, we identified the same clonotypic immunoglobulin heavy-chain complementarity determining region or T-cell receptor VD2-DD3 sequences in the neonatal blood spots (Guthrie card) and leukemic cell DNAs of 2 infants with CD10− ALL and 2 of the 5 older patients with CD10+ ALL. Nucleotide sequencing showed a paucity of N or P regions and shortened D germ line and conserved J sequences, indicative of cells arising from fetal hematopoiesis. Our findings strongly suggest a prenatal origin for some cases of B-cell precursor ALL lacking specific clonotypic abnormalities.


Blood ◽  
2002 ◽  
Vol 100 (1) ◽  
pp. 347-349 ◽  
Author(s):  
E. Renate Panzer-Grümayer ◽  
Karin Fasching ◽  
Simon Panzer ◽  
Klaudia Hettinger ◽  
Klaus Schmitt ◽  
...  

Abstract A hyperdiploid karyotype is found in 30% of B-cell precursor acute lymphoblastic leukemias in childhood. The time of nondisjunction of chromosomes leading to hyperdiploidy during leukemogenesis is unknown. We used the 3 clonotypic immunoglobulin heavy chain (IgH) gene rearrangements as molecular markers for each of the 3 chromosomes 14 in a case with hyperdiploid acute lymphoblastic leukemia to define the order of events—namely, somatic recombination and nondisjunction of chromosomes—during leukemia development. A partial sequence homology of the incomplete DJH rearrangement with 1 of the 2 nonfunctional VDJH rearrangements suggests that the doubling of chromosomes had occurred after this DJHrearrangement and thus during early B-cell differentiation. The occurrence of the nondisjunction of chromosomes as well as ongoing rearrangement processes in utero were confirmed by the presence of all 3 IgH rearrangements in neonatal blood spots, providing the first evidence that hyperdiploidy formation is an early event in leukemogenesis in these leukemias.


Blood ◽  
2008 ◽  
Vol 111 (1) ◽  
pp. 376-378 ◽  
Author(s):  
Minenori Eguchi-Ishimae ◽  
Mariko Eguchi ◽  
Helena Kempski ◽  
Mel Greaves

NOTCH1 mutations are common in T-lineage acute lymphoblastic leukemia (T-ALL). Twin studies and retrospective screening of neonatal blood spots provide evidence that fusion genes and other chromosomal abnormalities associated with pediatric leukemias can originate prenatally. Whether this is also the case for NOTCH1 mutations is unknown. Eleven cases of T-ALL were screened for NOTCH1 mutations and 4 (36%) had mutations in either the heterodimerization (HD) or proline glutamic acid/serine/threonine (PEST) domains. Of these 4, 3 could be amplified by mutation-specific polymerase chain reaction primers. In one of these 3, with the highest sensitivity, NOTCH1 mutation was detected in neonatal blood spots. In this patient, the blood spot was negative for SIL-TAL1 fusion, present concomitant with NOTCH1 mutation, in the diagnostic sample. We conclude that NOTCH1 can be an early or initiating event in T-ALL arising prenatally, to be complemented by a postnatal SIL-TAL1 fusion.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shumaila Sayyab ◽  
Anders Lundmark ◽  
Malin Larsson ◽  
Markus Ringnér ◽  
Sara Nystedt ◽  
...  

AbstractThe mechanisms driving clonal heterogeneity and evolution in relapsed pediatric acute lymphoblastic leukemia (ALL) are not fully understood. We performed whole genome sequencing of samples collected at diagnosis, relapse(s) and remission from 29 Nordic patients. Somatic point mutations and large-scale structural variants were called using individually matched remission samples as controls, and allelic expression of the mutations was assessed in ALL cells using RNA-sequencing. We observed an increased burden of somatic mutations at relapse, compared to diagnosis, and at second relapse compared to first relapse. In addition to 29 known ALL driver genes, of which nine genes carried recurrent protein-coding mutations in our sample set, we identified putative non-protein coding mutations in regulatory regions of seven additional genes that have not previously been described in ALL. Cluster analysis of hundreds of somatic mutations per sample revealed three distinct evolutionary trajectories during ALL progression from diagnosis to relapse. The evolutionary trajectories provide insight into the mutational mechanisms leading relapse in ALL and could offer biomarkers for improved risk prediction in individual patients.


2021 ◽  
Vol 10 (9) ◽  
pp. 1926
Author(s):  
Hiroto Inaba ◽  
Ching-Hon Pui

The outcomes of pediatric acute lymphoblastic leukemia (ALL) have improved remarkably during the last five decades. Such improvements were made possible by the incorporation of new diagnostic technologies, the effective administration of conventional chemotherapeutic agents, and the provision of better supportive care. With the 5-year survival rates now exceeding 90% in high-income countries, the goal for the next decade is to improve survival further toward 100% and to minimize treatment-related adverse effects. Based on genome-wide analyses, especially RNA-sequencing analyses, ALL can be classified into more than 20 B-lineage subtypes and more than 10 T-lineage subtypes with prognostic and therapeutic implications. Response to treatment is another critical prognostic factor, and detailed analysis of minimal residual disease can detect levels as low as one ALL cell among 1 million total cells. Such detailed analysis can facilitate the rational use of molecular targeted therapy and immunotherapy, which have emerged as new treatment strategies that can replace or reduce the use of conventional chemotherapy.


Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 214
Author(s):  
Željko Antić ◽  
Stefan H. Lelieveld ◽  
Cédric G. van der Ham ◽  
Edwin Sonneveld ◽  
Peter M. Hoogerbrugge ◽  
...  

Pediatric acute lymphoblastic leukemia (ALL) is the most common pediatric malignancy and is characterized by clonal heterogeneity. Genomic mutations can increase proliferative potential of leukemic cells and cause treatment resistance. However, mechanisms driving mutagenesis and clonal diversification in ALL are not fully understood. In this proof of principle study, we performed whole genome sequencing of two cases with multiple relapses in order to investigate whether groups of mutations separated in time show distinct mutational signatures. Based on mutation allele frequencies at diagnosis and subsequent relapses, we clustered mutations into groups and performed cluster-specific mutational profile analysis and de novo signature extraction. In patient 1, who experienced two relapses, the analysis unraveled a continuous interplay of aberrant activation induced cytidine deaminase (AID)/apolipoprotein B editing complex (APOBEC) activity. The associated signatures SBS2 and SBS13 were present already at diagnosis, and although emerging mutations were lost in later relapses, the process remained active throughout disease evolution. Patient 2 had three relapses. We identified episodic mutational processes at diagnosis and first relapse leading to mutations resembling ultraviolet light-driven DNA damage, and thiopurine-associated damage at first relapse. In conclusion, our data shows that investigation of mutational processes in clusters separated in time may aid in understanding the mutational mechanisms and discovery of underlying causes.


Sign in / Sign up

Export Citation Format

Share Document