STAT3 mediated upregulation of C-MET signaling acts as a compensatory survival mechanism upon EGFR family inhibition in chemoresistant breast cancer cells

2021 ◽  
Author(s):  
Yuying Zhu ◽  
He Zhang ◽  
Xingxing Han ◽  
Zhiyong Wang ◽  
Yanfen Cui ◽  
...  
2001 ◽  
Vol 21 (13) ◽  
pp. 4265-4275 ◽  
Author(s):  
Carolyn I. Sartor ◽  
Hong Zhou ◽  
Ewa Kozlowska ◽  
Katherine Guttridge ◽  
Evelyn Kawata ◽  
...  

ABSTRACT The function of the epidermal growth factor receptor (EGFR) family member HER4 remains unclear because its activating ligand, heregulin, results in either proliferation or differentiation. This variable response may stem from the range of signals generated by HER4 homodimers versus heterodimeric complexes with other EGFR family members. The ratio of homo- and heterodimeric complexes may be influenced both by a cell's EGFR family member expression profile and by the ligand or even ligand isoform used. To define the role of HER4 in mediating antiproliferative and differentiation responses, human breast cancer cell lines were screened for responses to heregulin. Only cells that expressed HER4 exhibited heregulin-dependent antiproliferative responses. In-depth studies of one line, SUM44, demonstrated that the antiproliferative and differentiation responses correlated with HER4 activation and were abolished by stable expression of a kinase-inactive HER4. HB-EGF, a HER4-specific ligand in this EGFR-negative cell line, also induced an antiproliferative response. Moreover, introduction and stable expression of HER4 in HER4-negative SUM102 cells resulted in the acquisition of a heregulin-dependent antiproliferative response, associated with increases in markers of differentiation. The role of HER2 in these heregulin-dependent responses was examined through elimination of cell surface HER2 signaling by stable expression of a single-chain anti-HER2 antibody that sequestered HER2 in the endoplasmic reticulum. In the cell lines with either endogenously (SUM44) or exogenously (SUM102) expressed HER4, elimination of HER2 did not alter HER4-dependent decreases in cell growth. These results suggest that HER4 is both necessary and sufficient to trigger an antiproliferative response in human breast cancer cells.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2151-2151
Author(s):  
Bipulendu Jena ◽  
Natalya Belousova ◽  
George T McNamara ◽  
David Rushworth ◽  
Tiejuan Mi ◽  
...  

Abstract Human epidermal growth factor receptor (EGFR) family consists of four members i.e. EGFR (HER1), HER2 (ErbB2), HER3 (ErbB3,) and HER4 (ErbB4). Overexpression, mutation, or catalytic activation of these proteins can lead to malignancies in breast, ovarian, colorectal, pancreatic and lung. Therapies targeting EGFR-associated proteins to disrupt signaling may fail because of crosstalk within the EGFR family or among downstream pathways. One mechanism of escape is HER3 activation and concomitant heterodimer formation with HER1 causing disease relapse and treatment failure. A bi-specific monoclonal antibody (mAb, MEHD7945A) can specifically bind an epitope shared between HER1-HER3 heterodimer thereby blocking EGFR-HER3 mediated signaling (Schaefer et al., Cancer Cell, 2011). We now report that the specificity of this mAb can be used to redirect the specificity of T cells through enforced expression of a chimeric antigen receptor (CAR) targeting the HER1-HER3 heterodimer, such as expressed on breast cancer cells. A 2nd generation CAR targeting the HER1-HER3 heterodimer was expressed from DNA plasmid constituting scFv (designated DL11f, derived from mAb MEHD7945A) coupled to CD3-zeta fused in frame with chimeric CD28 or CD137 T-cell signaling domains on a clinical-grade Sleeping Beauty (SB) backbone. T cells were electroporated with SB system and numerically expanded on irradiated “universal” activating and propagating cells (uAaPC) (Rushworth et al., J Immunotherapy, 2014). These feeder cells are derived from K-562 cells engineered to co-express a CAR activating ligand (CAR-L, a scFV specific to CAR stalk) to sustain proliferation of genetically modified T cells. We validated CAR expression on genetically modified T cells by flow cytometry and western blot. The specificity of HER1-HER3 specific CAR T cells was confirmed in situ by a proximity ligation-based assay using breast cancer cells. The redirected killing by CAR+ T cells to HER1+HER3+ breast cancer cells was confirmed in vitro and its efficacy evaluated in vivo in NSG mice bearing a breast tumor xenograft. HER1-HER3 specific CAR+ T cells activated via CD137 signaling exhibited superior proliferation compared with T cells expressing CAR with CD28 signaling domain. This is consistent with the ability of CD3-zeta/CD137 endodmain to alter mitochondrial metabolism and to suppress apoptosis leading to proliferation after initial activation. In summary, we report a new CAR design that can interrogate the conformation between two tumor-associated antigens (TAAs). This will likely improve specificity and limit on-target off-tissue side effects compared to CARs targeting only HER-1 or HER-3. Thus, targeting an epitope derived from two TAAs may help distinguish normal cells versus malignant cells and treat HER1+HER3+ malignancies that are resistant to therapies targeting single EGFR family members. These data have immediate translation appeal for targeting solid tumors as we use the SB and AaPC platforms to manufacture CAR+ T cells in our clinical trials. Disclosures Cooper: InCellerate: Equity Ownership; Sangamo: Patents & Royalties; Targazyme: Consultancy; GE Healthcare: Consultancy; Ferring Pharmaceuticals: Consultancy; Fate Therapeutics: Consultancy; Janssen Pharma: Consultancy; BMS: Consultancy; Miltenyi: Honoraria.


PLoS ONE ◽  
2013 ◽  
Vol 8 (2) ◽  
pp. e54455 ◽  
Author(s):  
Partha Mukhopadhyay ◽  
Imayavaramban Lakshmanan ◽  
Moorthy P. Ponnusamy ◽  
Subhankar Chakraborty ◽  
Maneesh Jain ◽  
...  

2021 ◽  
Vol 20 ◽  
pp. 153303382110049
Author(s):  
Kaichun Li ◽  
Liying Pang ◽  
Xiaorong Pan ◽  
Shaonan Fan ◽  
Xinxin Wang ◽  
...  

Salinomycin (Sal) is a potent inhibitor with effective anti-breast cancer properties in clinical therapy. The occurrence of various side effect of Sal greatly limits its application. The epidermal growth factor receptor (EGFR) family is a family of receptors highly expressed in most breast cancer cells. GE11 is a dodecapeptide which shows excellent EGFR affinity. A series of nanoparticles derivatives with GE11 peptide conjugated PLGA/TPGS were synthesized. Nanoprecipitation method was used to prepare the Sal loaded nanoparticles at the optimized concentration. The characterization, targeting efficacy, and antitumor activity were detected both in vitro and in vivo. Encapsulation of Sal in GE11 modified PLGA/TPGS nanoparticles shows an improved therapy efficacy and lower systemic side effect. This represents the delivery system a promising strategy to enhance the therapeutic effect against EGFR highly expressed breast cancer.


2010 ◽  
Vol 34 (8) ◽  
pp. S49-S49
Author(s):  
Lei Wang ◽  
Xun Zhou ◽  
Lihong Zhou ◽  
Yong Chen ◽  
Xun Zhu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document