Torsional buckling of double-walled carbon nanotubes

Carbon ◽  
2008 ◽  
Vol 46 (8) ◽  
pp. 1172-1174 ◽  
Author(s):  
Q. Wang
2012 ◽  
Vol 2012 ◽  
pp. 1-6
Author(s):  
Byeong-Woo Jeong

Transitional failure envelopes of single- and double-walled carbon nanotubes under combined tension-torsion are predicted using classical molecular dynamics simulations. The observations reveal that while the tensile failure load decreases with combined torsion, the torsional buckling moment increases with combined tension. As a result, the failure envelopes under combined tension-torsion are definitely different from those under pure tension or torsion. In such combined loading, there is a multitude of failure modes (tensile failure and torsional buckling), and the failure consequently exhibits the feature of transitional failure envelopes. In addition, the safe region of double-walled carbon nanotubes is significantly larger than that of single-walled carbon nanotubes due to the differences in the onset of torsional buckling.


2006 ◽  
Vol 17 (13) ◽  
pp. 3100-3104 ◽  
Author(s):  
Zhi-Gang Chen ◽  
Feng Li ◽  
Wen-Cai Ren ◽  
Hongtao Cong ◽  
Chang Liu ◽  
...  

2015 ◽  
Vol 3 (19) ◽  
pp. 4960-4969 ◽  
Author(s):  
Myriam Barrejón ◽  
Sara Pla ◽  
Isadora Berlanga ◽  
María J. Gómez-Escalonilla ◽  
Luis Martín-Gomis ◽  
...  

Three new covalently bonded DWCNT–PDIs have been synthesized and characterized, showing exclusively functionalization of the outer walls leaving the inner walls intact. Femtosecond transient absorption studies were performed to seek evidence of charge separation in these hybrids.


Sign in / Sign up

Export Citation Format

Share Document