scholarly journals Electrical conductivity of carbon nanotubes grown inside a mesoporous anodic aluminium oxide membrane

Carbon ◽  
2013 ◽  
Vol 55 ◽  
pp. 10-22 ◽  
Author(s):  
M. Sarno ◽  
A. Tamburrano ◽  
L. Arurault ◽  
S. Fontorbes ◽  
R. Pantani ◽  
...  
2012 ◽  
Vol 21 (6) ◽  
pp. 639-646 ◽  
Author(s):  
Maria Sarno ◽  
Diana Sannino ◽  
Caterina Leone ◽  
Paolo Ciambelli

2009 ◽  
Vol 9 (11) ◽  
pp. 6396-6400 ◽  
Author(s):  
Vicente López ◽  
Carmen Morant ◽  
Francisco Márquez ◽  
Félix Zamora ◽  
Eduardo Elizalde

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3140
Author(s):  
Kamil Dydek ◽  
Anna Boczkowska ◽  
Rafał Kozera ◽  
Paweł Durałek ◽  
Łukasz Sarniak ◽  
...  

The main aim of this work was the investigation of the possibility of replacing the heavy metallic meshes applied onto the composite structure in airplanes for lightning strike protection with a thin film of Tuball single-wall carbon nanotubes in the form of ultra-light, conductive paper. The Tuball paper studied contained 75 wt% or 90 wt% of carbon nanotubes and was applied on the top of carbon fibre reinforced polymer before fabrication of flat panels. First, the electrical conductivity, impact resistance and thermo-mechanical properties of modified laminates were measured and compared with the reference values. Then, flat panels with selected Tuball paper, expanded copper foil and reference panels were fabricated for lightning strike tests. The effectiveness of lightning strike protection was evaluated by using the ultrasonic phased-array technique. It was found that the introduction of Tuball paper on the laminates surface improved both the surface and the volume electrical conductivity by 8800% and 300%, respectively. The impact resistance was tested in two directions, perpendicular and parallel to the carbon fibres, and the values increased by 9.8% and 44%, respectively. The dynamic thermo-mechanical analysis showed higher stiffness and a slight increase in glass transition temperature of the modified laminates. Ultrasonic investigation after lightning strike tests showed that the effectiveness of Tuball paper is comparable to expanded copper foil.


2021 ◽  
Vol 129 (23) ◽  
pp. 235105
Author(s):  
L. Jamilpanah ◽  
M. Alihosseini ◽  
S. Ghasemi ◽  
N. Hassani ◽  
F. Peymanirad ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1150
Author(s):  
Nicolás A. Ulloa-Castillo ◽  
Roberto Hernández-Maya ◽  
Jorge Islas-Urbano ◽  
Oscar Martínez-Romero ◽  
Emmanuel Segura-Cárdenas ◽  
...  

This article focuses on exploring how the electrical conductivity and densification properties of metallic samples made from aluminum (Al) powders reinforced with 0.5 wt % concentration of multi-walled carbon nanotubes (MWCNTs) and consolidated through spark plasma sintering (SPS) process are affected by the carbon nanotubes dispersion and the Al particles morphology. Experimental characterization tests performed by scanning electron microscopy (SEM) and by energy dispersive spectroscopy (EDS) show that the MWCNTs were uniformly ball-milled and dispersed in the Al surface particles, and undesirable phases were not observed in X-ray diffraction measurements. Furthermore, high densification parts and an improvement of about 40% in the electrical conductivity values were confirmed via experimental tests performed on the produced sintered samples. These results elucidate that modifying the powder morphology using the ball-milling technique to bond carbon nanotubes into the Al surface particles aids the ability to obtain highly dense parts with increasing electrical conductivity properties.


Sign in / Sign up

Export Citation Format

Share Document