scholarly journals Ultrasound-assisted preparation of electrospun carbon fiber/graphene electrodes for capacitive deionization: Importance and unique role of electrical conductivity

Carbon ◽  
2016 ◽  
Vol 103 ◽  
pp. 311-317 ◽  
Author(s):  
Gang Wang ◽  
Qiang Dong ◽  
Tingting Wu ◽  
Fei Zhan ◽  
Ming Zhou ◽  
...  
2021 ◽  
Vol 254 ◽  
pp. 117667
Author(s):  
Gang Wang ◽  
Duanzheng Li ◽  
Shiyong Wang ◽  
Zongbin Zhao ◽  
Sihao Lv ◽  
...  

2020 ◽  
Vol 64 (2) ◽  
pp. 251-261
Author(s):  
Jessica E. Fellmeth ◽  
Kim S. McKim

Abstract While many of the proteins involved in the mitotic centromere and kinetochore are conserved in meiosis, they often gain a novel function due to the unique needs of homolog segregation during meiosis I (MI). CENP-C is a critical component of the centromere for kinetochore assembly in mitosis. Recent work, however, has highlighted the unique features of meiotic CENP-C. Centromere establishment and stability require CENP-C loading at the centromere for CENP-A function. Pre-meiotic loading of proteins necessary for homolog recombination as well as cohesion also rely on CENP-C, as do the main scaffolding components of the kinetochore. Much of this work relies on new technologies that enable in vivo analysis of meiosis like never before. Here, we strive to highlight the unique role of this highly conserved centromere protein that loads on to centromeres prior to M-phase onset, but continues to perform critical functions through chromosome segregation. CENP-C is not merely a structural link between the centromere and the kinetochore, but also a functional one joining the processes of early prophase homolog synapsis to late metaphase kinetochore assembly and signaling.


2020 ◽  
pp. 15-27

In order to study the effect of phosphogypsum and humic acids in the kinetic release of salt from salt-affected soil, a laboratory experiment was conducted in which columns made from solid polyethylene were 60.0 cm high and 7.1 cm in diameter. The columns were filled with soil so that the depth of the soil was 30 cm inside the column, the experiment included two factors, the first factor was phosphogypsum and was added at levels 0, 5, 10 and 15 tons ha-1 and the second-factor humic acids were added at levels 0, 50, 100 and 150 kg ha-1 by mixing them with the first 5 cm of column soil and one repeater per treatment. The continuous leaching method was used by using an electrolytic well water 2.72 dS m-1. Collect the leachate daily and continue the leaching process until the arrival of the electrical conductivity of the filtration of leaching up to 3-5 dS m-1. The electrical conductivity and the concentration of positive dissolved ions (Ca, Mg, Na) were estimated in leachate and the sodium adsorption ratio (SAR) was calculated. The results showed that the best equation for describing release kinetics of the salts and sodium adsorption ratio in soil over time is the diffusion equation. Increasing the level of addition of phosphogypsum and humic acids increased the constant release velocity (K) of salts and the sodium adsorption ratio. The interaction between phosphogypsum and humic acids was also affected by the constant release velocity of salts and the sodium adsorption ratio. The constant release velocity (K) of the salts and the sodium adsorption ratio at any level of addition of phosphogypsum increased with the addition of humic acids. The highest salts release rate was 216.57 in PG3HA3, while the lowest rate was 149.48 in PG0HA0. The highest release rate of sodium adsorption ratio was 206.09 in PG3HA3, while the lowest rate was 117.23 in PG0HA0.


Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 142-OR
Author(s):  
MASAJI SAKAGUCHI ◽  
SHOTA OKAGAWA ◽  
SAYAKA KITANO ◽  
TATSUYA KONDO ◽  
EIICHI ARAKI

2021 ◽  
pp. 1-15
Author(s):  
Helena Ross ◽  
Ryan Dritz ◽  
Barbara Morano ◽  
Sara Lubetsky ◽  
Pamela Saenger ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document