Interaction between graphene oxide and nitrogen-fixing bacterium Azotobacter chroococcum: Transformation, toxicity and nitrogen fixation

Carbon ◽  
2020 ◽  
Vol 160 ◽  
pp. 5-13 ◽  
Author(s):  
Ailimire Yilihamu ◽  
Bowei Ouyang ◽  
Peng Ouyang ◽  
Yitong Bai ◽  
Qiangqiang Zhang ◽  
...  
1968 ◽  
Vol 107 (1) ◽  
pp. 1-6 ◽  
Author(s):  
M Kelly

1. Nitrogen-fixing preparations from Azotobacter chroococcum reduced substrates with the following Km values: methyl isocyanide, 1·8×10−4m; ethyl isocyanide, 2·5×10−2m; cyanide ion, 1·4×10−3m; acetylene, 1·2×10−4m. 2. Nitrogen, carbon monoxide or hydrogen competitively inhibited isocyanide reduction with the following Ki values: hydrogen, 1·3×10−3m; carbon monoxide, 6·8×10−6m; nitrogen, 4·3×10−4m. 3. Living nitrogen-fixing bacteria, and isolated clover nodules, formed methane from methyl isocyanide. 4. These results are discussed in relation to other work and possible mechanisms of nitrogen fixation.


2020 ◽  
Vol 12 (11) ◽  
pp. 2002-2014
Author(s):  
Ling-Ling Yang ◽  
Zhao Jiang ◽  
Yan Li ◽  
En-Tao Wang ◽  
Xiao-Yang Zhi

Abstract Rhizobia are soil bacteria capable of forming symbiotic nitrogen-fixing nodules associated with leguminous plants. In fast-growing legume-nodulating rhizobia, such as the species in the family Rhizobiaceae, the symbiotic plasmid is the main genetic basis for nitrogen-fixing symbiosis, and is susceptible to horizontal gene transfer. To further understand the symbioses evolution in Rhizobiaceae, we analyzed the pan-genome of this family based on 92 genomes of type/reference strains and reconstructed its phylogeny using a phylogenomics approach. Intriguingly, although the genetic expansion that occurred in chromosomal regions was the main reason for the high proportion of low-frequency flexible gene families in the pan-genome, gene gain events associated with accessory plasmids introduced more genes into the genomes of nitrogen-fixing species. For symbiotic plasmids, although horizontal gene transfer frequently occurred, transfer may be impeded by, such as, the host’s physical isolation and soil conditions, even among phylogenetically close species. During coevolution with leguminous hosts, the plasmid system, including accessory and symbiotic plasmids, may have evolved over a time span, and provided rhizobial species with the ability to adapt to various environmental conditions and helped them achieve nitrogen fixation. These findings provide new insights into the phylogeny of Rhizobiaceae and advance our understanding of the evolution of symbiotic nitrogen fixation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Luz K. Medina-Cordoba ◽  
Aroon T. Chande ◽  
Lavanya Rishishwar ◽  
Leonard W. Mayer ◽  
Lina C. Valderrama-Aguirre ◽  
...  

AbstractPrevious studies have shown the sugarcane microbiome harbors diverse plant growth promoting microorganisms, including nitrogen-fixing bacteria (diazotrophs), which can serve as biofertilizers. The genomes of 22 diazotrophs from Colombian sugarcane fields were sequenced to investigate potential biofertilizers. A genome-enabled computational phenotyping approach was developed to prioritize sugarcane associated diazotrophs according to their potential as biofertilizers. This method selects isolates that have potential for nitrogen fixation and other plant growth promoting (PGP) phenotypes while showing low risk for virulence and antibiotic resistance. Intact nitrogenase (nif) genes and operons were found in 18 of the isolates. Isolates also encode phosphate solubilization and siderophore production operons, and other PGP genes. The majority of sugarcane isolates showed uniformly low predicted virulence and antibiotic resistance compared to clinical isolates. Six strains with the highest overall genotype scores were experimentally evaluated for nitrogen fixation, phosphate solubilization, and the production of siderophores, gibberellic acid, and indole acetic acid. Results from the biochemical assays were consistent and validated computational phenotype predictions. A genotypic and phenotypic threshold was observed that separated strains by their potential for PGP versus predicted pathogenicity. Our results indicate that computational phenotyping is a promising tool for the assessment of bacteria detected in agricultural ecosystems.


1973 ◽  
Vol 19 (3) ◽  
pp. 321-324 ◽  
Author(s):  
W. G. W. Kurz ◽  
T. A. G. LaRue

When Azotobacter chroococcum grows on glycolic acid as sole C source, it cannot utilize N2 and must be provided with reduced nitrogen. Glycolic acid is metabolized via Kornberg's dicarboxylic acid cycle. The TCA cycle enzymes are low in activity, and isocitric dehydrogenase is absent. It is likely that isocitric dehydrogenase is the source of reductant for nitrogen fixation by Azotobacter nitrogenase.


1939 ◽  
Vol 29 (2) ◽  
pp. 302-305 ◽  
Author(s):  
E. H. Richards

1. A study was made of nitrogen-fixation byAzotobacter chroococcumalone in a medium containing dextrose (which it can utilize) and in mixture with a coliform organism on a medium containing no carbohydrate except starch, whichAzotobactercannot utilize unless it be hydrolysed by the coliform organism or some other agency.2. The amount of nitrogen fixed in the mixed cultures was found to be maximal at two temperatures, and a discussion is given of the causes thought to be operative in producing the double maximum.


The International Biological Programme served as a focal point for studies on biological nitrogen fixation during the 1960s. The introduction of the acetylene reduction technique for measuring nitrogenase activity in the field led to estimates becoming available of the contribution of lichens, blue-green algae, nodulated non-legumes and bacterial-grass associations, as well as of legumes. Other studies carried out on the physiology and biochemistry of the process led to the eventual purification and characterization of the nitrogenase enzyme. These studies, collectively, provided the springboard for current work, so essential in view of the present energy crisis, on how to increase the use and efficiency of nitrogen-fixing plants, on the metabolic regulation of the nitrogenase enzyme and on the genetics of the nitrogen-fixing process, both in higher plants and in free-living micro-organisms.


2016 ◽  
Author(s):  
Χρυσάνθη Καλλονιάτη

Symbiotic nitrogen fixation in legumes takes place in specialized organs called nodules,which become the main source of assimilated nitrogen for the whole plant. Symbiotic nitro‐gen fixation requires exquisite integration of plant and bacterial metabolism and involvesglobal changes in gene expression and metabolite accumulation in both rhizobia and thehost plant. In order to study the metabolic changes mediated by symbiotic nitrogen fixationon a whole‐plant level, metabolite levels were profiled by gas chromatography–mass spec‐trometry in nodules and non‐symbiotic organs of Lotus japonicus plants uninoculated or in‐oculated with M. loti wt,  ΔnifA or  ΔnifH fix‐ strains. Furthermore, transcriptomic andbiochemical approaches were combined to study sulfur metabolism in nodules, its link tosymbiotic nitrogen fixation, and the effect of nodules on whole‐plant sulfur partitioning andmetabolism. It is well established that nitrogen and sulfur (S) metabolism are tightly en‐twined and sulfur is required for symbiotic nitrogen fixation, however, little is known aboutthe molecular and biochemical mechanisms governing sulfur uptake and assimilation duringsymbiotic nitrogen fixation. Transcript profiling in Lotus japonicus was combined with quan‐tification of S‐metabolite contents and APR activity in nodules and in non‐symbiotic organsof plants uninoculated or inoculated with M. loti wt, ΔnifA or ΔnifH fix‐ strains. Moreover,sulfate uptake and its distribution into different plant organs were analyzed and 35S‐flux intodifferent S‐pools was monitored. Metabolite profiling revealed that symbiotic nitrogen fixa‐tion results in dramatic changes of many aspects of primary and secondary metabolism innodules which leads to global reprogramming of metabolism of the model legume on awhole‐plant level. Moreover, our data revealed that nitrogen fixing nodules represent athiol‐rich organ. Their high APR activity and 35S‐flux into cysteine and its metabolites in com‐bination with the transcriptional up‐regulation of several genes involved in sulfur assimila‐tion highlight the function of nodules as a new site of sulfur assimilation. The higher thiolcontent observed in non‐symbiotic organs of nitrogen fixing plants in comparison touninoculated plants cannot be attributed to local biosynthesis, indicating that nodules couldserve as a novel source of reduced sulfur for the plant, which triggers whole‐plant repro‐gramming of sulfur metabolism. Interestingly, the changes in metabolite profiling and theenhanced thiol biosynthesis in nodules and their impact on the whole‐plant sulfur, carbonand nitrogen economy are dampened in fix‐ plants, which in most respects metabolically re‐sembled uninoculated plants, indicating a strong interaction between nitrogen fixation andsulfur and carbon metabolism.


2007 ◽  
Vol 20 (10) ◽  
pp. 1241-1249 ◽  
Author(s):  
Manuel J. Granados-Baeza ◽  
Nicolás Gómez-Hernández ◽  
Yolanda Mora ◽  
María J. Delgado ◽  
David Romero ◽  
...  

Symbiotic nitrogen-fixing bacteria express a terminal oxidase with a high oxygen affinity, the cbb3-type oxidase encoded by the fixNOQP operon. Previously, we have shown that, in Rhizobium etli CFN42, the repeated fixNOQP operons (fixNOQPd and fixNOQPf) have a differential role in nitrogen fixation. Only the fixNOQPd operon is required for the establishment of an effective symbiosis; microaerobic induction of this operon is under the control of at least three transcriptional regulators, FixKf, FnrNd, and FnrNchr, belonging to the Crp/Fnr family. In this work, we describe two novel Crp/Fnr-type transcriptional regulators (StoRd and StoRf, symbiotic terminal oxidase regulators) that play differential roles in the control of key genes for nitrogen fixation. Mutations either in stoRd or stoRf enhance the microaerobic expression of both fixNOQP reiterations, increasing also the synthesis of the cbb3-type oxidase in nodules. Despite their structural similarity, a differential role of these genes was also revealed, since a mutation in stoRd but not in stoRf enhanced both the expression of fixKf and the nitrogen-fixing capacity of R. etli CFN42.


Sign in / Sign up

Export Citation Format

Share Document