Self-assembled high-strength hydroxyapatite/graphene oxide/chitosan composite hydrogel for bone tissue engineering

2017 ◽  
Vol 155 ◽  
pp. 507-515 ◽  
Author(s):  
Peng Yu ◽  
Rui-Ying Bao ◽  
Xiao-Jun Shi ◽  
Wei Yang ◽  
Ming-Bo Yang
Polymers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1112 ◽  
Author(s):  
Yanqin Wang ◽  
Yanan Xue ◽  
Jinghui Wang ◽  
Yaping Zhu ◽  
Yu Zhu ◽  
...  

In this work, to obtain a novel composite hydrogel with high mechanical strength, fluorescence and degradable behavior for bone tissue engineering, we prepare a nanofiller and double-network (DN) structure co-enhanced carbon dots/hydroxyapatite/poly (vinyl alcohol) (CDs/HA/PVA) DN hydrogel. The composite hydrogels are fabricated by a combination of two fabrication techniques including chemical copolymerization and freezing‒thawing cycles, and further characterized by FTIR, XRD, etc. Additional investigations focus on the mechanical properties of the hydrogel with varying mass ratios of CDs to PVA, HA to PVA and different numbers of freezing/thawing cycles. The results show that the as-prepared CDs3.0/HA0.6/PVA DN9 hydrogel has optimized compression properties (Compression strength = 3.462 MPa, Young’s modulus = 4.5 kPa). This is mainly caused by the synergism effect of the nanofiller and chemical and physical co-crosslinking. The water content and swelling ratio of the CDs/HA/PVA SN and DN gels are also systematically investigated to reveal the relationship of their microstructural features and mechanical behavior. In addition, in vitro degradation tests of the CDs/HA/PVA DN hydrogel show that the DN hydrogels have a prominent degradable behavior. So, they have potential to be used as high-strength, self-tracing bone substitutes in the biomedical engineering field.


2015 ◽  
Vol 3 (23) ◽  
pp. 4679-4689 ◽  
Author(s):  
Ya-Ping Guo ◽  
Jun-Jie Guan ◽  
Jun Yang ◽  
Yang Wang ◽  
Chang-Qing Zhang ◽  
...  

A bioinspired strategy has been developed to fabricate a hybrid nanostructured hydroxyapatite–chitosan composite scaffold for bone tissue engineering.


2011 ◽  
Vol 7 (5) ◽  
pp. 2244-2255 ◽  
Author(s):  
Muwan Chen ◽  
Dang Q.S. Le ◽  
Anette Baatrup ◽  
Jens V. Nygaard ◽  
San Hein ◽  
...  

2015 ◽  
Vol 54 ◽  
pp. 20-25 ◽  
Author(s):  
Hye-Lee Kim ◽  
Gil-Yong Jung ◽  
Jun-Ho Yoon ◽  
Jung-Suk Han ◽  
Yoon-Jeong Park ◽  
...  

2017 ◽  
Vol 28 (16) ◽  
pp. 1966-1983 ◽  
Author(s):  
Yamina Boukari ◽  
Omar Qutachi ◽  
David J. Scurr ◽  
Andrew P. Morris ◽  
Stephen W. Doughty ◽  
...  

2018 ◽  
Vol 32 (10) ◽  
pp. 1392-1405 ◽  
Author(s):  
Ali Deniz Dalgic ◽  
Ammar Z. Alshemary ◽  
Ayşen Tezcaner ◽  
Dilek Keskin ◽  
Zafer Evis

In this study, novel graphene oxide–incorporated silicate-doped nano-hydroxyapatite composites were prepared and their potential use for bone tissue engineering was investigated by developing an electrospun poly(ε-caprolactone) scaffold. Nanocomposite groups were synthesized to have two different ratios of graphene oxide (2 and 4 wt%) to evaluate the effect of graphene oxide incorporation and groups with different silicate-doped nano-hydroxyapatite content was prepared to investigate optimum concentrations of both silicate-doped nano-hydroxyapatite and graphene oxide. Three-dimensional poly(ε-caprolactone) scaffolds were prepared by wet electrospinning and reinforced with silicate-doped nano-hydroxyapatite/graphene oxide nanocomposite groups to improve bone regeneration potency. Microstructural and chemical characteristics of the scaffolds were investigated by X-ray diffraction, Fourier transform infrared spectroscope and scanning electron microscopy techniques. Protein adsorption and desorption on material surfaces were studied using fetal bovine serum. Presence of graphene oxide in the scaffold, dramatically increased the protein adsorption with decreased desorption. In vitro biocompatibility studies were conducted using human osteosarcoma cell line (Saos-2). Electrospun scaffold group that was prepared with effective concentrations of silicate-doped nano-hydroxyapatite and graphene oxide particles (poly(ε-caprolactone) – 10% silicate-doped nano-hydroxyapatite – 4% graphene oxide) showed improved adhesion, spreading, proliferation and alkaline phosphatase activity compared to other scaffold groups.


Author(s):  
Ozan Karaman ◽  
Cenk Celik ◽  
Aylin Sendemir Urkmez

Cranial, maxillofacial, and oral fractures, as well as large bone defects, are currently being treated by auto- and allograft procedures. These techniques have limitations such as immune response, donor-site morbidity, and lack of availability. Therefore, the interest in tissue engineering applications as replacement for bone graft has been growing rapidly. Typical bone tissue engineering models require a cell-supporting scaffold in order to maintain a 3-dimensional substrate mimicking in vivo extracellular matrix for cells to attach, proliferate and function during the formation of bone tissue. Combining the understanding of molecular and structural biology with materials engineering and design will enable new strategies for developing biological tissue constructs with clinical relevance. Self-assembled biomimetic scaffolds are especially suitable as they provide spatial and temporal regulation. Specifically, self-assembling peptides capable of in situ gelation serve as attractive candidates for minimally invasive injectable therapies in bone tissue engineering applications.


Sign in / Sign up

Export Citation Format

Share Document