scholarly journals A fibrous cellulose paste formulation to manufacture structural parts using 3D printing by extrusion

2019 ◽  
Vol 212 ◽  
pp. 119-128 ◽  
Author(s):  
C. Thibaut ◽  
A. Denneulin ◽  
S. Rolland du Roscoat ◽  
D. Beneventi ◽  
L. Orgéas ◽  
...  
2021 ◽  
pp. 002199832199642
Author(s):  
Ahmet İpekçi ◽  
Bülent Ekici

3D printing technology has gradually taken its place in many sectors. However, expected performance cannot be obtained from the structural parts with this method due to the raw material properties and constraints of Cartesian motion systems. This technology cannot replace structural parts produced by traditional manufacturing methods. In order to avoid these constraints, it is preferred to use continuous fiber reinforced polymer composites in many areas such as automotive and aerospace industries due to their low weight and high specific strength properties. These automated composite manufacturing methods currently have limited production of geometric shapes due to the need for additional molds and production as flat surfaces. To overcome all these constraints, fiberglass reinforced ultraviolet ray-curing polymer matrix composite material are selected for robotic 3 D printing process and various parameters are examined. Fiber-polymer combination and layer structure formation was examined. Scanning Electron Microscopy (SEM) images of sections of 3 D printed test samples were taken and fiber resin curing was examined. The nozzle diameter, printing speed, fiber density and Ultra Violet (UV) light intensity parameters, which will provide effective 3 D printing process, are optimized with the Taguchi method. Tensile strength, flexural strength and izod impact values are considered as result parameters for optimization. It was found that it would be appropriate for 3D printing with a 1.0 mm nozzle diameter, 600 tex fiber density, 4 UV light, 600 mm/min printing speed. With these 3D printing process parameters, approximately 125 MPa tensile strength and 450 MPa flexural strength can be obtained. With this study, support and contribution was provided to researchers, composite producers, tool manufacturer and literature who want to use and develop this 3D printing process.


2020 ◽  
Vol 9 (11) ◽  
pp. e209119572
Author(s):  
Gleyse Karina Lopes de Oliveira Pinheiro ◽  
André Lima Batista ◽  
Ricardo Ney Cobucci ◽  
Amália Cinthia Meneses Rêgo ◽  
Irami Araújo-Filho ◽  
...  

The attempt to repair skin wounds dates back many years. We have observed bone fragments for making needles, hair, fibers, and animal tissues as sutures and even applying sensors to accelerate the healing process throughout history. Despite all the developments, the need for a qualified professional and prior local anesthesia to perform the suture still represent obstacles. The present study aimed to create 3D printing pieces containing N42 neodymium magnets to be fixed to the skin with adhesive tape to promote skin wounds' closure without the need for anesthesia. A descriptive, experimental study was carried out, divided into the Patent search, Ideation and creation, 3D Modeling, 3D printing of structural parts, Assembly, and Testing on artificial skin. ABSplus® plastic parts were created through 3D printing that received N42 neodymium magnets and the application of a double-sided adhesive to attach to the skin. A perilesional arrangement was simulated with the pieces created using an artificial skin model (EasySuture® Standart) after making the incision. After applying the pieces containing N42 neodymium, there was a perfect coaptation of the lesion's edges without detecting interspersed spaces in the longitudinal axis of the incision. The research resulted in creating a prototype that needs improvements and industrial adaptations for viable use in surgical practice.


Nature ◽  
2013 ◽  
Vol 494 (7436) ◽  
pp. 174-174 ◽  
Author(s):  
Michael Pawlyn
Keyword(s):  

Nature ◽  
2020 ◽  
Vol 588 (7839) ◽  
pp. 594-595
Author(s):  
Cameron Darkes-Burkey ◽  
Robert F. Shepherd
Keyword(s):  

Author(s):  
Thomas Birtchnell ◽  
William Hoyle
Keyword(s):  

2018 ◽  
Vol 4 (2) ◽  
pp. 85-90
Author(s):  
Y. M. Dovydenko ◽  
N. A. Ivanova ◽  
S. A. Chizhik ◽  
V. E. Agabekov

Sign in / Sign up

Export Citation Format

Share Document