Effects of silylated starch structure on hydrophobization and mechanical properties of thermoplastic starch foams made from potato starch

2020 ◽  
Vol 241 ◽  
pp. 116274 ◽  
Author(s):  
Bruno Felipe Bergel ◽  
Ludmila Leite Araujo ◽  
André Luís dos Santos da Silva ◽  
Ruth Marlene Campomanes Santana
2018 ◽  
Vol 200 ◽  
pp. 106-114 ◽  
Author(s):  
Bruno Felipe Bergel ◽  
Samara Dias Osorio ◽  
Luana Machado da Luz ◽  
Ruth Marlene Campomanes Santana

2016 ◽  
Vol 30 (2) ◽  
pp. 211-218 ◽  
Author(s):  
Tomasz Oniszczuk ◽  
Agnieszka Wójtowicz ◽  
Leszek Moácicki ◽  
Marcin Mitrus ◽  
Karol Kupryaniuk ◽  
...  

Abstract This paper presents the results covering the mechanical properties of thermoplastic potato starch granules with flax, cellulose fibre, and pine bark addition. A modified single screw extrusion-cooker TS-45 with L/D = 18 and an additional cooling section of the barrel was used as the processing unit. The establishment influence of the fibre addition, as well as the extrusion-cooker screw speed, on the mechanical properties of the thermoplastic starch granules was the main objective of the investigation. The maximum force during compression to 50% of the sample diameter, elastic modulus, and compression strength were evaluated. Significant differences were noted depending on the amount of fibre used, while only an insignificant influence of screw speed on the mechanical properties of the granulate was reported. An increased amount of fibres lowered the maximum force as well as the elastic modulus and compression strength of the thermoplastic starch granulates.


2015 ◽  
Vol 29 (3) ◽  
pp. 267-273 ◽  
Author(s):  
Dariusz Chocyk ◽  
Bożena Gładyszewska ◽  
Anna Ciupak ◽  
Tomasz Oniszczuk ◽  
Leszek Mościcki ◽  
...  

Abstract The aim of this paper is to study the influence of water on the mechanical properties of thermoplastic starch films. Experimental observations of Young modulus and the breaking force of thermoplastic starch foils with different percentages of polyvinyl alcohol and keratin additives and screw rotation speeds are reported. Thermoplastic starch foils are prepared by the extrusion method with the bowling from potato starch and glycerol as a plasticizer. Young modulus and the breaking force were determined by the random marker method. Measurements of Young modulus and the breaking force of the films were performed after their production and after dosing with water. It was observed that in all cases Young modulus decreases after dosing with water, but the breaking force lied in the same range. Thermoplastic starch foils produced at the screw rotation speed equal to 60 r.p.m. have the best mechanical properties. The highest value of Young modulus and the breaking force were obtained for samples with a 1% keratin additive.


2021 ◽  
Vol 5 (2) ◽  
pp. 48
Author(s):  
Yuxuan Wang ◽  
Yuke Zhong ◽  
Qifeng Shi ◽  
Sen Guo

Thermoplastic starch/butyl glycol ester copolymer/polylactic acid (TPS/PBSA/PLA) biodegradable composites were prepared by melt-mixing. The structure, microstructure, mechanical properties and heat resistance of the TPS/PBSA/PLA composites were studied by Fourier-transform infrared spectrometry (FTIR), scanning electron microscopy (SEM), tensile test and thermogravimetry tests, respectively. The results showed that PBSA or PLA could bind to TPS by hydrogen bonding. SEM analysis showed that the composite represents an excellent dispersion and satisfied two-phase compatibility when the PLA, TPS and PBSA blended by a mass ration of 10, 30, and 60. The mechanical properties and the heat resistance of TPS/PBSA/PLA composite were improved by adding PLA with content less than 10%, according to the testing results.


Processes ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 329
Author(s):  
Tan Yi ◽  
Minghui Qi ◽  
Qi Mo ◽  
Lijie Huang ◽  
Hanyu Zhao ◽  
...  

Composite films of polybutylene adipate terephthalate (PBAT) were prepared by adding thermoplastic starch (TPS) (TPS/PBAT) and nano-zinc oxide (nano-ZnO) (TPS/PBAT/nano-ZnO). The changes of surface morphology, thermal properties, crystal types and functional groups of starch during plasticization were analyzed by scanning electron microscopy, synchronous thermal analysis, X-ray diffraction, infrared spectrometry, mechanical property tests, and contact Angle and transmittance tests. The relationship between the addition of TPS and the tensile strength, transmittance, contact angle, water absorption, and water vapor barrier of the composite film, and the influence of nano-ZnO on the mechanical properties and contact angle of the 10% TPS/PBAT composite film. Experimental results show that, after plasticizing, the crystalline form of starch changed from A-type to V-type, the functional group changed and the lipophilicity increased; the increase of TPS content, the light transmittance and mechanical properties of the composite membrane decreased, while the water vapor transmittance and water absorption increased. The mechanical properties of the composite can be significantly improved by adding nano-ZnO at a lower concentration (optimum content is 1 wt%).


Sign in / Sign up

Export Citation Format

Share Document