Bacteriostatic activity and cytotoxicity of bacterial cellulose-chitosan film loaded with in-situ synthesized silver nanoparticles

2021 ◽  
pp. 119017
Author(s):  
Hang Zhao ◽  
Liang Zhang ◽  
Sen Zheng ◽  
Shouning Chai ◽  
Jinliu Wei ◽  
...  
Cellulose ◽  
2014 ◽  
Vol 21 (6) ◽  
pp. 4557-4567 ◽  
Author(s):  
Jin Feng ◽  
Qingshan Shi ◽  
Wenru Li ◽  
Xiulin Shu ◽  
Aimei Chen ◽  
...  

RSC Advances ◽  
2015 ◽  
Vol 5 (118) ◽  
pp. 97467-97476 ◽  
Author(s):  
Ning Yan ◽  
Yabin Zhou ◽  
Yudong Zheng ◽  
Shuang Qiao ◽  
Qun Yu ◽  
...  

p-BC/AgNP carbon aerogels with excellent reabsorption capacities and mechanical properties were prepared by in situ reduction and carbonization. The aerogels had better antibacterial behavior and biocompatibility due to their slow controlled release of silver.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4793
Author(s):  
Adrian Ionut Nicoara ◽  
Alexandra Elena Stoica ◽  
Denisa-Ionela Ene ◽  
Bogdan Stefan Vasile ◽  
Alina Maria Holban ◽  
...  

Hydroxyapatite (HAp) and bacterial cellulose (BC) composite materials represent a promising approach for tissue engineering due to their excellent biocompatibility and bioactivity. This paper presents the synthesis and characterization of two types of materials based on HAp and BC, with antibacterial properties provided by silver nanoparticles (AgNPs). The composite materials were obtained following two routes: (1) HAp was obtained in situ directly in the BC matrix containing different amounts of AgNPs by the coprecipitation method, and (2) HAp was first obtained separately using the coprecipitation method, then combined with BC containing different amounts of AgNPs by ultrasound exposure. The obtained materials were characterized by means of XRD, SEM, and FT-IR, while their antimicrobial effect was evaluated against Gram-negative bacteria (Escherichia coli), Gram-positive bacteria (Staphylococcus aureus), and yeast (Candida albicans). The results demonstrated that the obtained composite materials were characterized by a homogenous porous structure and high water absorption capacity (more than 1000% w/w). These materials also possessed low degradation rates (<5% in simulated body fluid (SBF) at 37 °C) and considerable antimicrobial effect due to silver nanoparticles (10–70 nm) embedded in the polymer matrix. These properties could be finetuned by adjusting the content of AgNPs and the synthesis route. The samples prepared using the in situ route had a wider porosity range and better homogeneity.


2020 ◽  
Vol 245 ◽  
pp. 116573 ◽  
Author(s):  
Swaminathan Jiji ◽  
Sivalingam Udhayakumar ◽  
Kannan Maharajan ◽  
Chellan Rose ◽  
Chellappa Muralidharan ◽  
...  

2014 ◽  
Vol 102 ◽  
pp. 762-771 ◽  
Author(s):  
Jian Wu ◽  
Yudong Zheng ◽  
Wenhui Song ◽  
Jiabin Luan ◽  
Xiaoxiao Wen ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1428
Author(s):  
Agnieszka Pluta-Kubica ◽  
Ewelina Jamróz ◽  
Gohar Khachatryan ◽  
Adam Florkiewicz ◽  
Pavel Kopel

There is a serious need to develop and test new biodegradable packaging which could at least partially replace petroleum-based materials. Therefore, the objective of this work was to examine the influence of the recently developed furcellaran nanocomposite film with silver nanoparticles (obtained by an in situ method) on the quality properties of two cheese varieties: a rennet-curd (gouda) and an acid-curd (quark) cheese. The water content, physicochemical properties, microbiological and organoleptic quality of cheese, and migration of silver nanoparticles were examined. Both the number of Lactococcus and total bacteria count did not differ during storage of gouda regardless of the packaging applied. The number of Lactococcus decreased in analogous quark samples. The use of the film slowed down and inhibited the growth of yeast in gouda and quark, respectively. An inhibitory effect of this film on mold count was also observed; however, only regarding gouda. The level of silver migration was found to be lower in quark than in gouda. The film improved the microbiological quality of cheeses during storage. Consequently, it is worth continuing research for the improvement of this film in order to enable its use in everyday life.


Sign in / Sign up

Export Citation Format

Share Document