Antibacterial properties and cytocompatibility of bio-based nanostructured carbon aerogels derived from silver nanoparticles deposited onto bacterial cellulose

RSC Advances ◽  
2015 ◽  
Vol 5 (118) ◽  
pp. 97467-97476 ◽  
Author(s):  
Ning Yan ◽  
Yabin Zhou ◽  
Yudong Zheng ◽  
Shuang Qiao ◽  
Qun Yu ◽  
...  

p-BC/AgNP carbon aerogels with excellent reabsorption capacities and mechanical properties were prepared by in situ reduction and carbonization. The aerogels had better antibacterial behavior and biocompatibility due to their slow controlled release of silver.

Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4793
Author(s):  
Adrian Ionut Nicoara ◽  
Alexandra Elena Stoica ◽  
Denisa-Ionela Ene ◽  
Bogdan Stefan Vasile ◽  
Alina Maria Holban ◽  
...  

Hydroxyapatite (HAp) and bacterial cellulose (BC) composite materials represent a promising approach for tissue engineering due to their excellent biocompatibility and bioactivity. This paper presents the synthesis and characterization of two types of materials based on HAp and BC, with antibacterial properties provided by silver nanoparticles (AgNPs). The composite materials were obtained following two routes: (1) HAp was obtained in situ directly in the BC matrix containing different amounts of AgNPs by the coprecipitation method, and (2) HAp was first obtained separately using the coprecipitation method, then combined with BC containing different amounts of AgNPs by ultrasound exposure. The obtained materials were characterized by means of XRD, SEM, and FT-IR, while their antimicrobial effect was evaluated against Gram-negative bacteria (Escherichia coli), Gram-positive bacteria (Staphylococcus aureus), and yeast (Candida albicans). The results demonstrated that the obtained composite materials were characterized by a homogenous porous structure and high water absorption capacity (more than 1000% w/w). These materials also possessed low degradation rates (<5% in simulated body fluid (SBF) at 37 °C) and considerable antimicrobial effect due to silver nanoparticles (10–70 nm) embedded in the polymer matrix. These properties could be finetuned by adjusting the content of AgNPs and the synthesis route. The samples prepared using the in situ route had a wider porosity range and better homogeneity.


Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 812 ◽  
Author(s):  
Monika Szymańska-Chargot ◽  
Monika Chylińska ◽  
Piotr M. Pieczywek ◽  
Anna Walkiewicz ◽  
Giorgia Pertile ◽  
...  

In this research, it was proposed to use carrot cellulose nanofibrils (CCNF) isolated from carrot pomace modified with silver nanoparticles (AgNPs) as a filler of polylactic acid (PLA) composites matrix. The new procedure was based on two steps: first, the preparation of nanocellulose modified with metal nanoparticles, and then the combination with PLA. Two concentrations—0.25 mM and 2 mM—of AgNO3 were used to modify CCNF. Then, PLA was mixed with the filler (CCNF/AgNPs) in two proportions 99:1 and 96:4. The influence of CCNF/AgNPs on mechanical, hydrophilic, thermal, and antibacterial properties of obtained nanocomposites was evaluated. The greatest improvement of mechanical properties was observed for composite containing CCNF with 2 mM of AgNPs, which obtained the lowest Young modulus and highest strain at break. The degradation temperature was lower for PLA with CCNF/AgNPs, but crystallization temperature wasn’t influenced. The addition of CCNF/AgNPs also increased hydrophilicity. The transmission rates of oxygen, nitrogen, and carbon dioxide also increased after the addition of CCNF/AgNPs to PLA. The antibacterial function against Escherichia coli and Bacillus cereus was obtained after the addition of AgNPs but only at the contact surface with the material made, suggesting the lack of migration of nanoparticles from the composite.


RSC Advances ◽  
2020 ◽  
Vol 10 (68) ◽  
pp. 41600-41611
Author(s):  
A. Farouk ◽  
S. El-Sayed Saeed ◽  
S. Sharaf ◽  
M. M. Abd El-Hady

Silver nanoparticles were in situ prepared on the surface of linen fabric coated by graphene oxide (GO).


Cellulose ◽  
2014 ◽  
Vol 21 (6) ◽  
pp. 4557-4567 ◽  
Author(s):  
Jin Feng ◽  
Qingshan Shi ◽  
Wenru Li ◽  
Xiulin Shu ◽  
Aimei Chen ◽  
...  

2015 ◽  
Vol 51 (30) ◽  
pp. 6544-6547 ◽  
Author(s):  
Changhui Liu ◽  
Zhihe Qing ◽  
Jing Zheng ◽  
Li Deng ◽  
Cheng Ma ◽  
...  

AgNPs are prepared in situ by the DNA-templated process as tunable gatekeepers for mesoporous silica nanocontainers for smart intracellular GSH-controlled release.


e-Polymers ◽  
2011 ◽  
Vol 11 (1) ◽  
Author(s):  
Yingbo Chen ◽  
Lina Liu ◽  
Yufeng Zhang

AbstractPoly(vinylidene fluoride)-silver nanoparticle (PVDF-Ag) composites were synthesized by in situ reduction of silver salt using dimethylformide (DMF) as both a solvent and a reductant. The crystalline properties (e.g., crystallinity and the types of crystals) of the composites were characterized. It was shown that PVDF in the composites had a higher melting temperature than pure PVDF, and the α phase crystal in the composites became more stable with an increase in the amount of silver nanoparticles. The mechanical properties and morphologies of the composites were also investigated. It was noted that the PVDF-Ag composites have better mechanical properties when silver nanoparticles were added. The increase in toughness could be attributed to the formation of continuous structure between PVDF and silver particles.


Holzforschung ◽  
2020 ◽  
Vol 74 (5) ◽  
pp. 523-528 ◽  
Author(s):  
Li Fan ◽  
Hui Zhang ◽  
Mengxi Gao ◽  
Meng Zhang ◽  
Pengtao Liu ◽  
...  

AbstractWith the increasing application of polyvinyl alcohol (PVA) films in the field of food packaging, it is important to improve its mechanical and antibacterial properties. This paper focuses on the preparation of PVA nanocomposite films and how their properties are affected by a silver-loaded nanocellulose solution. Cellulose nanocrystals (CNCs) were used as both the carrier and the dispersant of silver nanoparticles (AgNPs) prepared using glucose as the reducing agent. Ag+ was stabilized by the many hydroxyl groups located in the CNCs, and then the Ag+ was reduced to AgNPs in situ. After addition of silver-loaded nanocellulose, the tensile strength of the CNC-PVA-AgNP films increased from 47 MPa to 73 MPa, and the nanocomposite films displayed reduced moisture absorption and good antibacterial properties.


2019 ◽  
Vol 6 (5) ◽  
pp. 182102 ◽  
Author(s):  
Peng Zhang ◽  
Jianzhong Qin ◽  
Bo Zhang ◽  
Yi Zheng ◽  
Lingyan Yang ◽  
...  

Methicillin-resistant Staphylococcus aureus (MRSA) often induces chronic osteomyelitis and then bone defects. Here, gentamicin-loaded silk/nanosilver composite scaffolds were developed to treat MRSA-induced chronic osteomyelitis. AgNO 3 was reduced with silk as a reducing agent in formic acid, forming silver nanoparticles in situ that were distributed uniformly in the composite scaffolds. Superior antibacterial properties against MRSA were achieved for the composite scaffolds, without the compromise of osteogenesis capacity. Then gentamicin was loaded on the scaffolds for better treatment of osteomyelitis. In vivo results showed effective inhibition of the growth of MRSA bacteria, confirming the promising future in the treatment of chronic osteomyelitis.


2016 ◽  
Vol 27 (5) ◽  
pp. 508-514 ◽  
Author(s):  
Fernando Vazquez-Garcia ◽  
◽  
Mário Tanomaru-Filho ◽  
Gisselle Moraima Chávez-Andrade ◽  
Roberta Bosso-Martelo ◽  
...  

Abstract Mineral trioxide aggregate (MTA) and Portland cement (PC) are calcium silicate cements. They have similar physicochemical, mechanical and biological properties. The addition of zirconium oxide (ZrO2) to PC provides radiopacity. Silver nanoparticles (AgNPs) may improve some properties of cements. The aim of this study was to evaluate the effect of AgNPs on physicochemical/mechanical properties and antibacterial activity of white MTA (WMTA) and PC associated with ZrO2. The following materials were evaluated: WMTA; PC 70% + ZrO2 30%; WMTA+ AgNPs; and PC 70% + ZrO2 30% + AgNPs. The study evaluated radiopacity, setting time, pH, compressive strength and solubility. For radiopacity analysis, radiographs were made alongside an aluminum (Al) step wedge. To evaluate the antibacterial activity, direct contact test was performed on planktonic cells and Enterococcus faecalis biofilm induced on bovine root dentin for 14 days. The experimental periods were 5 and 15 h. Data were obtained as CFU mL-1. The obtained data were submitted to ANOVA and Tukey tests (p<0.05). The addition of AgNPs to WMTA increased the pH, lowered the solubility and the initial and final setting times. The addition of AgNPs to PC/ZrO2 maintained the pH, lowered the solubility, and increased the setting time and compressive strength. The radiopacity of all materials was higher than 4 mmAl. The addition of AgNPs promoted an increase in antibacterial activity for calcium silicate cements and favored the physicochemical and mechanical properties of the materials.


Sign in / Sign up

Export Citation Format

Share Document