Amide-linked brartemicin glycolipids exhibit Mincle-mediated agonist activity in vitro

2021 ◽  
pp. 108461
Author(s):  
Emma M. Dangerfield ◽  
Amy T. Lynch ◽  
Kristel Kodar ◽  
Bridget L. Stocker ◽  
Mattie S.M. Timmer
Keyword(s):  
2021 ◽  
Vol 14 (673) ◽  
pp. eaax3053
Author(s):  
Mieke Metzemaekers ◽  
Anneleen Mortier ◽  
Alessandro Vacchini ◽  
Daiane Boff ◽  
Karen Yu ◽  
...  

The inflammatory human chemokine CXCL5 interacts with the G protein–coupled receptor CXCR2 to induce chemotaxis and activation of neutrophils. CXCL5 also has weak agonist activity toward CXCR1. The N-terminus of CXCL5 can be modified by proteolytic cleavage or deimination of Arg9 to citrulline (Cit), and these modifications can occur separately or together. Here, we chemically synthesized native CXCL5(1–78), truncated CXCL5 [CXCL5(9–78)], and the citrullinated (Cit9) versions and characterized their functions in vitro and in vivo. Compared with full-length CXCL5, N-terminal truncation resulted in enhanced potency to induce G protein signaling and β-arrestin recruitment through CXCR2, increased CXCL5-initiated internalization of CXCR2, and greater Ca2+ signaling downstream of not only CXCR2 but also CXCR1. Citrullination did not affect the capacity of CXCL5 to activate classical or alternative signaling pathways. Administering the various CXCL5 forms to mice revealed that in addition to neutrophils, CXCL5 exerted chemotactic activity toward monocytes and that this activity was increased by N-terminal truncation. These findings were confirmed by in vitro chemotaxis and Ca2+ signaling assays with primary human CD14+ monocytes and human THP-1 monocytes. In vitro and in vivo analyses suggested that CXCL5 targeted monocytes through CXCR1 and CXCR2. Thus, truncation of the N-terminus makes CXCL5 a more potent chemoattractant for both neutrophils and monocytes that acts through CXCR1 and CXCR2.


2015 ◽  
Vol 747 ◽  
pp. 123-131 ◽  
Author(s):  
Lisbeth Kristensson ◽  
Gaëll Mayer ◽  
Karolina Ploj ◽  
Martina Wetterlund ◽  
Susanne Arlbrandt ◽  
...  

2022 ◽  
Vol 12 ◽  
Author(s):  
Valentina Ceglia ◽  
Sandra Zurawski ◽  
Monica Montes ◽  
Mitchell Kroll ◽  
Aurélie Bouteau ◽  
...  

CD40 is a potent activating receptor expressed on antigen-presenting cells (APCs) of the immune system. CD40 regulates many aspects of B and T cell immunity via interaction with CD40L expressed on activated T cells. Targeting antigens to CD40 via agonistic anti-CD40 antibody fusions promotes both humoral and cellular immunity, but current anti-CD40 antibody-antigen vaccine prototypes require co-adjuvant administration for significant in vivo efficacy. This may be a consequence of dulling of anti-CD40 agonist activity via antigen fusion. We previously demonstrated that direct fusion of CD40L to anti-CD40 antibodies confers superagonist properties. Here we show that anti-CD40-CD40L-antigen fusion constructs retain strong agonist activity, particularly for activation of dendritic cells (DCs). Therefore, we tested anti-CD40-CD40L antibody fused to antigens for eliciting immune responses in vitro and in vivo. In PBMC cultures from HIV-1-infected donors, anti-CD40-CD40L fused to HIV-1 antigens preferentially expanded HIV-1-specific CD8+ T cells versus CD4+ T cells compared to analogous anti-CD40-antigen constructs. In normal donors, anti-CD40-CD40L-mediated delivery of Influenza M1 protein elicited M1-specific T cell expansion at lower doses compared to anti-CD40-mediated delivery. Also, on human myeloid-derived dendritic cells, anti-CD40-CD40L-melanoma gp100 peptide induced more sustained Class I antigen presentation compared to anti-CD40-gp100 peptide. In human CD40 transgenic mice, anti-CD40-CD40L-HIV-1 gp140 administered without adjuvant elicited superior antibody responses compared to anti-CD40-gp140 antigen without fused CD40L. In human CD40 mice, compared to the anti-CD40 vehicle, anti-CD40-CD40L delivery of Eα 52-68 peptide elicited proliferating of TCR I-Eα 52-68 CD4+ T cells producing cytokine IFNγ. Also, compared to controls, only anti-CD40-CD40L-Cyclin D1 vaccination of human CD40 mice reduced implanted EO771.LMB breast tumor cell growth. These data demonstrate that human CD40-CD40L antibody fused to antigens maintains highly agonistic activity and generates immune responses distinct from existing low agonist anti-CD40 targeting formats. These advantages were in vitro skewing responses towards CD8+ T cells, increased efficacy at low doses, and longevity of MHC Class I peptide display; and in mouse models, a more robust humoral response, more activated CD4+ T cells, and control of tumor growth. Thus, the anti-CD40-CD40L format offers an alternate DC-targeting platform with unique properties, including intrinsic adjuvant activity.


2020 ◽  
Vol 104 ◽  
pp. 106899 ◽  
Author(s):  
Stephen Jenkinson ◽  
Susan M.G. Goody ◽  
Asser Bassyouni ◽  
Rhys Jones ◽  
Annie Otto-Bruc ◽  
...  

2014 ◽  
Vol 113 ◽  
pp. 312-319 ◽  
Author(s):  
Ayesha Misquith ◽  
H.W. Millie Fung ◽  
Quinton M. Dowling ◽  
Jeffrey A. Guderian ◽  
Thomas S. Vedvick ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5618
Author(s):  
Harmie Luyao ◽  
Hendrik Luesch ◽  
Mylene Uy

We report the first isolation of the alkaloid aaptamine from the Philippine marine sponge Stylissa sp. Aaptamine possessed weak antiproliferative activity against HCT116 colon cancer cells and inhibited the proteasome in vitro at 50 µM. These activities may be functionally linked. Due to its known, more potent activity on certain G-protein coupled receptors (GPCRs), including α-adrenergic and δ-opioid receptors, the compound was profiled more broadly at sub-growth inhibitory concentrations against a panel of 168 GPCRs to potentially reveal additional targets and therapeutic opportunities. GPCRs represent the largest class of drug targets. The primary screen at 20 µM using the β-arrestin functional assay identified the antagonist, agonist, and potentiators of agonist activity of aaptamine. Dose-response analysis validated the α-adrenoreceptor antagonist activity of aaptamine (ADRA2C, IC50 11.9 µM) and revealed the even more potent antagonism of the β-adrenoreceptor (ADRB2, IC50 0.20 µM) and dopamine receptor D4 (DRD4, IC50 6.9 µM). Additionally, aaptamine showed agonist activity on selected chemokine receptors, by itself (CXCR7, EC50 6.2 µM; CCR1, EC50 11.8 µM) or as a potentiator of agonist activity (CXCR3, EC50 31.8 µM; CCR3, EC50 16.2 µM). These GPCRs play a critical role in the treatment of cardiovascular disease, diabetes, cancer, and neurological disorders. The results of this study may thus provide novel preventive and therapeutic strategies for noncommunicable diseases (NCDs).


Sign in / Sign up

Export Citation Format

Share Document