scholarly journals Industrial Cunninghamia lanceolata carbon supported FeO(OH) nanoparticles-catalyzed hydrogenation of nitroarenes

2022 ◽  
pp. 106398
Author(s):  
Dingzhong Li ◽  
Hao Lu ◽  
Tianbao Yang ◽  
Chen Xing ◽  
Tulai Sun ◽  
...  
2014 ◽  
Vol 38 (1) ◽  
pp. 45-53 ◽  
Author(s):  
WU Jun-Jun ◽  
◽  
YANG Zhi-Jie ◽  
LIU Xiao-Fei ◽  
XIONG De-Cheng ◽  
...  

Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 752
Author(s):  
Yichen Zhou ◽  
Zengxin Zhang ◽  
Bin Zhu ◽  
Xuefei Cheng ◽  
Liu Yang ◽  
...  

Cunninghamia lanceolata (Lamb.) Hook. (Chinese fir) is one of the main timber species in Southern China, which has a wide planting range that accounts for 25% of the overall afforested area. Moreover, it plays a critical role in soil and water conservation; however, its suitability is subject to climate change. For this study, the appropriate distribution area of C. lanceolata was analyzed using the MaxEnt model based on CMIP6 data, spanning 2041–2060. The results revealed that (1) the minimum temperature of the coldest month (bio6), and the mean diurnal range (bio2) were the most important environmental variables that affected the distribution of C. lanceolata; (2) the currently suitable areas of C. lanceolata were primarily distributed along the southern coastal areas of China, of which 55% were moderately so, while only 18% were highly suitable; (3) the projected suitable area of C. lanceolata would likely expand based on the BCC-CSM2-MR, CanESM5, and MRI-ESM2-0 under different SSPs spanning 2041–2060. The increased area estimated for the future ranged from 0.18 to 0.29 million km2, where the total suitable area of C. lanceolata attained a maximum value of 2.50 million km2 under the SSP3-7.0 scenario, with a lowest value of 2.39 million km2 under the SSP5-8.5 scenario; (4) in combination with land use and farmland protection policies of China, it is estimated that more than 60% of suitable land area could be utilized for C. lanceolata planting from 2041–2060 under different SSP scenarios. Although climate change is having an increasing influence on species distribution, the deleterious impacts of anthropogenic activities cannot be ignored. In the future, further attention should be paid to the investigation of species distribution under the combined impacts of climate change and human activities.


Trees ◽  
2021 ◽  
Author(s):  
Guijun Liu ◽  
Xian Xue ◽  
Jinling Feng ◽  
Dechang Cao ◽  
Jinxing Lin ◽  
...  

2014 ◽  
Vol 44 (6) ◽  
pp. 582-592 ◽  
Author(s):  
Liming Bian ◽  
Jisen Shi ◽  
Renhua Zheng ◽  
Jinhui Chen ◽  
Harry X. Wu

Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) is the most commercially important conifer in China, and the Nanjing Forestry University – Fujian Province Chinese fir Cooperation (NJFU – Fujian Cooperation) breeding program has advanced it into the third cycle of selection and breeding. In this paper, we estimated genetic parameters from four sites for 80 half-sib families and summarized previous estimates of genetic parameters in Chinese fir with an objective to propose optimal breeding strategy. Heritability averaged 0.20 and 0.14 for height and diameter at breast height (DBH), respectively, for the four sites. A significant genotype–environment interaction (G × E) for growth was also observed among the four sites, with the greatest interactions between a marginal site and the three central sites in the Fujian Province Chinese fir plantation region. The average estimated type-B genetic correlation between the marginal site and the three central sites was 0.08 for height and –0.09 for DBH. However, the highly productive families were among the most stable across the four sites. The results from this study in combination with summarized genetic parameters from literature were used to discuss and propose an optimal breeding strategy for the third generation of the breeding program for Chinese firs in Fujian Province.


Sign in / Sign up

Export Citation Format

Share Document