Long-term effects of N deposition on N2O emission in an alpine grassland of Central Asia

CATENA ◽  
2019 ◽  
Vol 182 ◽  
pp. 104100 ◽  
Author(s):  
Fengzhan Geng ◽  
Kaihui Li ◽  
Xuejun Liu ◽  
Yanming Gong ◽  
Ping Yue ◽  
...  
2015 ◽  
Vol 12 (1) ◽  
pp. 79-101 ◽  
Author(s):  
Y. Wu ◽  
C. Blodau ◽  
T. R. Moore ◽  
J. Bubier ◽  
S. Juutinen ◽  
...  

Abstract. Nitrogen (N) pollution of peatlands alters their carbon (C) balances, yet long-term effects and controls are poorly understood. We applied the model PEATBOG to explore impacts of long-term nitrogen (N) fertilization on C cycling in an ombrotrophic bog. Simulations of summer gross ecosystem production (GEP), ecosystem respiration (ER) and net ecosystem exchange (NEE) were evaluated against 8 years of observations and extrapolated for 80 years to identify potential effects of N fertilization and factors influencing model behaviour. The model successfully simulated moss decline and raised GEP, ER and NEE on fertilized plots. GEP was systematically overestimated in the model compared to the field data due to factors that can be related to differences in vegetation distribution (e.g. shrubs vs. graminoid vegetation) and to high tolerance of vascular plants to N deposition in the model. Model performance regarding the 8-year response of GEP and NEE to N input was improved by introducing an N content threshold shifting the response of photosynthetic capacity (GEPmax) to N content in shrubs and graminoids from positive to negative at high N contents. Such changes also eliminated the competitive advantages of vascular species and led to resilience of mosses in the long-term. Regardless of the large changes of C fluxes over the short-term, the simulated GEP, ER and NEE after 80 years depended on whether a graminoid- or shrub-dominated system evolved. When the peatland remained shrub–Sphagnum-dominated, it shifted to a C source after only 10 years of fertilization at 6.4 g N m−2 yr−1, whereas this was not the case when it became graminoid-dominated. The modelling results thus highlight the importance of ecosystem adaptation and reaction of plant functional types to N deposition, when predicting the future C balance of N-polluted cool temperate bogs.


2009 ◽  
Vol 40 (2-3) ◽  
pp. 198-216 ◽  
Author(s):  
Anne Merete S. Sjøeng ◽  
Richard F. Wright ◽  
Øyvind Kaste

MAGIC (the Model of Acidification of Groundwater In Catchments) has been widely applied on catchments all over the world. The model has been used with annual time resolution to simulate the long-term effects of acidic deposition on surface water chemistry. Here MAGIC was applied using a monthly time step. The purpose was to simulate observed seasonal nitrate (NO3) concentrations and fluxes at an upland heathland catchment in southwestern Norway during the period 1993–2004. The rates of the key ecosystem nitrogen (N) processes (mineralization, plant uptake, litterfall and immobilization) were assumed to be governed by temperature. A snow accumulation and melt routine was used. The rates were calibrated to obtain the best match between the observed and simulated NO3 patterns. The best fit was obtained with standard yearly cycles for deposition and N parameters. The results show that MAGIC can explain 68 and 88% of the variation in seasonal NO3 concentrations and fluxes, respectively. The calibrated model provides a tool for exploring the effects of future scenarios of climate change and N deposition on NO3 in streamwater.


2012 ◽  
Vol 42 (3) ◽  
pp. 437-450 ◽  
Author(s):  
Juan A. Blanco ◽  
Xiaohua Wei ◽  
Hong Jiang ◽  
Cheng-Yue Jie ◽  
Zan-Hong Xin

Atmospheric pollution levels in China are increasing quickly. Experience from other polluted regions shows that tree growth could be affected, but long-term effects of N deposition and soil acidification on Chinese forests remain mostly unknown. Soil acidification and N deposition were simulated for Chinese fir ( Cunninghamia lanceolata (Lamb.) Hook.) plantations managed for three consecutive 20-year rotations in southeastern China. A factorial experiment combined four rain pH levels (2.5, 4.0, 5.6, and 7.0), four N deposition rates (1, 7.5, 15, and 30 kg N·ha–1·year–1), and two site qualities (poor and rich). Results indicate that atmospheric pollution effects are not immediate, but after one to two rotations, soil acidification effects could reduce ecosystem C pools significantly (–25% and –11% in poor and rich sites, respectively). N deposition rates above 15 kg N·ha–1·year–1 could offset some of the negative effects of soil acidification and lead to more ecosystem C (19 and 28 Mg C·ha–1 more in poor and rich sites, respectively, than in low N deposition). However, at high N deposition rates (>15 kg N·ha–1·year–1), N leaching losses could greatly increase, reaching 75 kg N·ha–1·year–1. Moderate N deposition could increase tree biomass production and soil organic mass, resulting in increased ecosystem C, but these gains could be associated with important N leaching. Atmospheric pollution could also result in the long term in nutrient imbalances and additional ecological issues (i.e., biodiversity loss, eutrophication, etc.) not studied here.


2013 ◽  
Vol 57 ◽  
pp. 706-712 ◽  
Author(s):  
Søren O. Petersen ◽  
Per Ambus ◽  
Lars Elsgaard ◽  
Per Schjønning ◽  
Jørgen E. Olesen

2014 ◽  
Vol 11 (7) ◽  
pp. 10271-10321 ◽  
Author(s):  
Y. Wu ◽  
C. Blodau ◽  
T. R. Moore ◽  
J. L. Bubier ◽  
S. Juutinen ◽  
...  

Abstract. Nitrogen (N) pollution of peatlands alters their carbon (C) balances, yet long-term effects and controls are poorly understood. We applied the model PEATBOG to analyze impacts of long-term nitrogen (N) fertilization on C cycling in an ombrotrophic bog. Simulations of summer gross ecosystem production (GEP), ecosystem respiration (ER) and net ecosystem exchange (NEE) were evaluated against 8 years of observations and extrapolated for 80 years to identify potential effects of N fertilization and factors influencing model behavior. The model successfully simulated moss decline and raised GEP, ER and NEE on fertilized plots. GEP was systematically overestimated in the model compared to the field data due to high tolerance of Sphagnum to N deposition in the model. Model performance regarding the 8 year response of GEP and NEE to N was improved by introducing an N content threshold shifting the response of photosynthesis capacity to N content in shrubs and graminoids from positive to negative at high N contents. Such changes also eliminated the competitive advantages of vascular species and led to resilience of mosses in the long-term. Regardless of the large changes of C fluxes over the short-term, the simulated GEP, ER and NEE after 80 years depended on whether a graminoid- or shrub-dominated system evolved. When the peatland remained shrub-Sphagnum dominated, it shifted to a C source after only 10 years of fertilization at 6.4 g N m−2 yr−1, whereas this was not the case when it became graminoid-dominated. The modeling results thus highlight the importance of ecosystem adaptation and reaction of plant functional types to N deposition, when predicting the future C balance of N-polluted cool temperate bogs.


2007 ◽  
Vol 2 (1) ◽  
pp. 31-40
Author(s):  
Slavica Penev

Investment Climate and Foreign Direct Investment Trends in the South Caucasus and Central AsiaThis paper analyzes and compares investment climates and trends in the South Caucasus and Central Asia. The analyses and comparisons were conducted in view of the impacts of transitional progress, economic development, and the energy reserves from these regions on the inflow of foreign direct investment. Improvement of the investment climate by accelerating the transition process and reducing investment risks can be seen as the most important determinants of FDI inflows into the countries of these two regions. Structural diversification of South Caucasian and Central Asian natural resource-based economies would be essential in ending dependence on the energy and mining sectors and would have positive long-term effects on economic growth and the investment climate, and attract other, additional types of FDI.


Author(s):  
T. M. Seed ◽  
M. H. Sanderson ◽  
D. L. Gutzeit ◽  
T. E. Fritz ◽  
D. V. Tolle ◽  
...  

The developing mammalian fetus is thought to be highly sensitive to ionizing radiation. However, dose, dose-rate relationships are not well established, especially the long term effects of protracted, low-dose exposure. A previous report (1) has indicated that bred beagle bitches exposed to daily doses of 5 to 35 R 60Co gamma rays throughout gestation can produce viable, seemingly normal offspring. Puppies irradiated in utero are distinguishable from controls only by their smaller size, dental abnormalities, and, in adulthood, by their inability to bear young.We report here our preliminary microscopic evaluation of ovarian pathology in young pups continuously irradiated throughout gestation at daily (22 h/day) dose rates of either 0.4, 1.0, 2.5, or 5.0 R/day of gamma rays from an attenuated 60Co source. Pups from non-irradiated bitches served as controls. Experimental animals were evaluated clinically and hematologically (control + 5.0 R/day pups) at regular intervals.


Author(s):  
D.E. Loudy ◽  
J. Sprinkle-Cavallo ◽  
J.T. Yarrington ◽  
F.Y. Thompson ◽  
J.P. Gibson

Previous short term toxicological studies of one to two weeks duration have demonstrated that MDL 19,660 (5-(4-chlorophenyl)-2,4-dihydro-2,4-dimethyl-3Hl, 2,4-triazole-3-thione), an antidepressant drug, causes a dose-related thrombocytopenia in dogs. Platelet counts started to decline after two days of dosing with 30 mg/kg/day and continued to decrease to their lowest levels by 5-7 days. The loss in platelets was primarily of the small discoid subpopulation. In vitro studies have also indicated that MDL 19,660: does not spontaneously aggregate canine platelets and has moderate antiaggregating properties by inhibiting ADP-induced aggregation. The objectives of the present investigation of MDL 19,660 were to evaluate ultrastructurally long term effects on platelet internal architecture and changes in subpopulations of platelets and megakaryocytes.Nine male and nine female beagle dogs were divided equally into three groups and were administered orally 0, 15, or 30 mg/kg/day of MDL 19,660 for three months. Compared to a control platelet range of 353,000- 452,000/μl, a doserelated thrombocytopenia reached a maximum severity of an average of 135,000/μl for the 15 mg/kg/day dogs after two weeks and 81,000/μl for the 30 mg/kg/day dogs after one week.


Sign in / Sign up

Export Citation Format

Share Document