scholarly journals Morphological and sedimentological responses of small stream channels to extreme rainfall and land use in the Darjeeling Himalayas

CATENA ◽  
2020 ◽  
Vol 188 ◽  
pp. 104444
Author(s):  
Paweł Prokop ◽  
Łukasz Wiejaczka ◽  
Subir Sarkar ◽  
Tomasz Bryndal ◽  
Anna Bucała-Hrabia ◽  
...  
Author(s):  
V. Borrell Estupina ◽  
F. Raynaud ◽  
N. Bourgeois ◽  
L. Kong-A-Siou ◽  
L. Collet ◽  
...  

Abstract. Flash floods are often responsible for many deaths and involve many material damages. Regarding Mediterranean karst aquifers, the complexity of connections, between surface and groundwater, as well as weather non-stationarity patterns, increase difficulties in understanding the basins behaviour and thus warning and protecting people. Furthermore, given the recent changes in land use and extreme rainfall events, knowledge of the past floods is no longer sufficient to manage flood risks. Therefore the worst realistic flood that could occur should be considered. Physical and processes-based hydrological models are considered among the best ways to forecast floods under diverse conditions. However, they rarely match with the stakeholders' needs. In fact, the forecasting services, the municipalities, and the civil security have difficulties in running and interpreting data-consuming models in real-time, above all if data are uncertain or non-existent. To face these social and technical difficulties and help stakeholders, this study develops two operational tools derived from these models. These tools aim at planning real-time decisions given little, changing, and uncertain information available, which are: (i) a hydrological graphical tool (abacus) to estimate flood peak discharge from the karst past state and the forecasted but uncertain intense rainfall; (ii) a GIS-based method (MARE) to estimate the potential flooded pathways and areas, accounting for runoff and karst contributions and considering land use changes. Then, outputs of these tools are confronted to past and recent floods and municipalities observations, and the impacts of uncertainties and changes on planning decisions are discussed. The use of these tools on the recent 2014 events demonstrated their reliability and interest for stakeholders. This study was realized on French Mediterranean basins, in close collaboration with the Flood Forecasting Services (SPC Med-Ouest, SCHAPI, municipalities).


2014 ◽  
Vol 931-932 ◽  
pp. 791-796 ◽  
Author(s):  
Kittiwet Kuntiyawichai ◽  
Winai Sri-Amporn ◽  
Chadchai Pruthong

When the severity of exposure to flood is being addressed, several related concerns have always been raised to draw attention on a growing flood threat. In relation to this, the extraordinary insight into the seriousness of land use and rainfall changes that could greatly exacerbate flood impacts would need to be highlighted. The importance of the aforementioned issue lies in the main objective of quantifying consequences of how changes in land use and rainfall affect the hydrological processes in the lower Nam Phong River Basin. The use of Hydrologic Modeling System (HEC-HMS) simulation model would add robustness and predictability to the overall results. It was apparent from the calibration and validation processes that there are reasonably close agreement between observed and simulated discharges at Ban Nong Hin gauging station (E.22A), with good correlation coefficients (ENS= 0.78, r2= 0.81 and ENS= 0.77, r2= 0.82, respectively). Thereafter, different what-if scenarios were conducted to determine impacts of land use changes in 2001, 2011 and 2057 and extreme rainfall with different return periods of 10-, 50-and 100-years on hydrological responses. A slight increase in peak flows were equal to 4% and 1%, as a consequence of the change from 2001 land use conditions to 2011 and 2057, respectively. Conversely, a large increase in peak discharges was expected to be 13%, 20% and 27% when the 2001 rainfall event was adjusted to the projected changes in rainfall corresponding to 10-, 50-and 100-year return periods, respectively. In brief, insignificant relation between hydrological response and land use changes was obviously found, but it was of particular significance due to changes in rainfall extremes. Taken together, obtained findings can then be used as a baseline for water resources planning, development and management, as well as flood management perspective.


2014 ◽  
Vol 11 (10) ◽  
pp. 11037-11069
Author(s):  
W. Duan ◽  
B. He ◽  
K. Takara ◽  
P. Luo ◽  
D. Nover ◽  
...  

Abstract. It is important to understand the mechanisms that control suspended sediment (SS) fate and transport in rivers as high suspended sediment loads have significant impacts on riverine hydroecology. In this study, the watershed model SPARROW (SPAtially Referenced Regression on Watershed Attributes) was applied to estimate the sources and transport of SS in surface waters of the Ishikari River Basin (14 330 km2), the largest watershed on Hokkaido Island, Japan. The final developed SPARROW model has four source variables (developing lands, forest lands, agricultural lands, and stream channels), three landscape delivery variables (slope, soil permeability, and precipitation), two in-stream loss coefficients including small stream (streams with drainage area < 200 km2), large stream, and reservoir attenuation. The model was calibrated using measurements of SS from 31 monitoring sites of mixed spatial data on topography, soils and stream hydrography. Calibration results explain approximately 95.96% (R2) of the spatial variability in the natural logarithm mean annual SS flux (kg km−2 yr−1) and display relatively small prediction errors at the 31 monitoring stations. Results show that developing-land is associated with the largest sediment yield at around 1006.27 kg km−2 yr−1, followed by agricultural-land (234.21 kg km−2 yr−1). Estimation of incremental yields shows that 35.11% comes from agricultural lands, 23.42% from forested lands, 22.91% from developing lands, and 18.56% from stream channels. The results of this study improve our understanding of sediments production and transportation in the Ishikari River Basin in general, which will benefit both the scientific and the management community in safeguarding water resources.


2021 ◽  
Vol 9 ◽  
Author(s):  
Kanayim Teshebaeva ◽  
Ko J. van Huissteden ◽  
Helmut Echtler ◽  
Alexander V. Puzanov ◽  
Dmitry N. Balykin ◽  
...  

We investigate permafrost surface features revealed from satellite radar data in the Siberian arctic at the Yamal peninsula. Surface dynamics analysis based on SRTM and TanDEM-X DEMs shows up to 2 m net loss of surface relief between 2000 and 2014 indicating a highly dynamic landscape. Surface features for the past 14 years reflect an increase in small stream channels and a number of new lakes that developed, likely caused by permafrost thaw. We used Sentinel-1 SAR imagery to measure permafrost surface changes. Owing to limited observation data we analyzed only 2 years. The InSAR time-series has detected surface displacements in three distinct spatial locations during 2017 and 2018. At these three locations, 60–120 mm/yr rates of seasonal surface permafrost changes are observed. Spatial location of seasonal ground displacements aligns well with lithology. One of them is located on marine sediments and is linked to anthropogenic impact on permafrost stability. Two other areas are located within alluvial sediments and are at the top of topographic elevated zones. We discuss the influence of the geologic environment and the potential effect of local upwelling of gas. These combined analyses of InSAR time-series with analysis of geomorphic features from DEMs present an important tool for continuous process monitoring of surface dynamics as part of a global warming risk assessment.


2020 ◽  
Author(s):  
Bernhard Lucke

&lt;p&gt;Assessments of land degradation in arid and semi-arid regions frequently employ models calculating annual erosion rates from the size of sediment bodies, assuming grain-by-grain transport and constant processes of deposition. It is often attempted to connect historic sediment bodies to past land use and climate by correlations with demographic estimates and reconstructions of past precipitation averages. In addition, mass transport is often equalled with soil loss and fertility degradation, based on the idea that humus-rich topsoils store the greatest part of soil nutrients. However, such concepts are based on premises transferred from temperate regions, and their suitability for arid and semi-arid regions is questionable. For example, dryland soils usually contain very small amounts of organic matter, which means that their fertility is mostly a function of texture, and a limited loss of topsoil is rather irrelevant for agricultural productivity. Part of the sediments deposited in valleys come from soft, easily erodible rocks, which means that they reflect slope denudation and not soil erosion. As well, erosion-sedimentation processes do often not take place by continuous transport of single grains. This is illustrated with a valley fill in northern Jordan: sediments were deposited discontinuously, mainly by slumping and earth flows, and the largest parts of the fill accumulated in time frames of ~100 years during the two Little Ice Ages (6&lt;sup&gt;th&lt;/sup&gt; and 14&lt;sup&gt;th&lt;/sup&gt; century AD/CE). Due to a dominance of smectites, the clay-rich Red Mediterranean Soils in the vicinity shrink and form cracks during the dry period. Because of the cracks and underlying limestone karst, they can swallow strong rains without erosion risk. However, when water-saturated, soils expand and may move in slump flows. Soil-covered geoarchaeological features like a buried ancient cemetery illustrate that such viscous flows created new land surfaces, sealing cavities but not filling them. This suggests a major role of rare but intense rainfall events in erosion-deposition processes. Analogies with modern rainfalls, including record levels of precipitation during the winter 1991/1992, indicate that levels of soil moisture triggering similar slump flows have not been reached during times of modern rainfall monitoring. That ancient land use played a minor role for erosion is supported by intense surveys of archaeological material on fields surrounding the valley, which indicate that the periods of most intensive land use coincided with very limited sediment deposition. Concepts of land degradation in semi-arid and arid regions should be reconsidered, respecting the more irregular environmental setting, the specific soil properties, and traditional land use systems which evolved in constant adaptation to this environment. Rare but extreme rainfall events as potential main drivers of land degradation should be considered more: they are difficult to control or mitigate, but may increase due to climate change.&lt;/p&gt;


Author(s):  
A. Cerbelaud ◽  
L. Roupioz ◽  
G. Blanchet ◽  
P. Breil ◽  
X. Briottet

Abstract. In the context of climate change and rising frequency of extreme hydro-meteorological events around the world, flood risk management and mapping of heavy rainfall-related damages represent an ongoing critical challenge. For decades now, remote sensing has been largely used to investigate spatial and temporal changes in land use and water resources. Today, different satellite products provide fast and crucial knowledge for the study of hydrological disasters over large areas, possibly in remote regions, with high spatial resolution and high revisit frequency. Yet, until now, few works have sought to detect the full range of extreme rainfall-related damages with optical imagery, especially those caused by intense rainwater runoff beyond the direct vicinity of major waterways. The work presented in this paper focuses on the Aude severe weather event of October 15th, 2018, in the South of France, for which more than a thousand claims for agricultural disaster were registered, both related to river overflowing and rainwater runoff.The full resources of ground truths, contextual information, land use as well as digital elevation model (DEM) combined to high resolution and high frequency optical imagery (Sentinel-2, Pléiades) are used to develop an automatic damage detection method based on supervised classification algorithms. Through the combination of several indicators characterizing heterogeneous spectral variations among agricultural plots following the event, a Gaussian process classifier achieved various classification accuracies up to 90% on a large comparable and independent photo-interpreted validation sample. This work builds great expectations for applications in other areas with contrasted climate, topography and land cover.


2011 ◽  
Vol 35 (4) ◽  
pp. 465-492 ◽  
Author(s):  
Katie Price

Baseflow is the portion of streamflow that is sustained between precipitation events, fed to stream channels by delayed (usually subsurface) pathways. Understanding baseflow processes is critical to issues of water quality, supply, and habitat. This review synthesizes the body of global literature investigating relationships between baseflow and watershed characteristics of geomorphology, soil, and land use, as well as the potential effects of climate change, with an emphasis on humid, tropical and temperate (non-snowpackdominated) regions. Such factors are key controls on baseflow through their influence on infiltration, rates of water removal from the catchment, and subsurface storage properties. The literature shows that there is much that remains to be resolved in gaining a solid understanding of the influence of watershed characteristics on baseflow. While it is clear that watershed geomorphology influences baseflow, there is no consensus on which geomorphic parameters are most closely linked to subsurface storage and baseflow. Many studies associate higher watershed forest cover with lower baseflows, attributed to high evapotranspiration rates of forests, while other studies indicate increased baseflow with higher watershed forest cover due to higher infiltration and recharge of subsurface storage. The demonstrated effects of agriculture and urbanization are also inconsistent, due to varied additions of imported water and extremely variable background conditions. This review underscores the need for more research that addresses multiple aspects of the watershed system in explaining baseflows, and for methodological consistency to allow for more fruitful comparisons across case studies. These needs are of immediate demand, given scientific and management emphasis on environmental flows required for maintenance of key ecosystem services.


Sign in / Sign up

Export Citation Format

Share Document