Land-use impact on porosity and water retention of soils rich in rock fragments

CATENA ◽  
2020 ◽  
Vol 195 ◽  
pp. 104807
Author(s):  
F. Sekucia ◽  
P. Dlapa ◽  
J. Kollár ◽  
A. Cerdá ◽  
A. Hrabovský ◽  
...  
2018 ◽  
Vol 13 (Special issue 1) ◽  
pp. 11-21
Author(s):  
KALYANI SUPRIYA ◽  
R K AGGARWAL ◽  
S K BHARDWAJ

Landuse alteration is one of the primary causes of global environmental change. Changes in the landuse usually occurred regionally and globally over last few decades and will carry on in the future as well. These activities are highly influenced by anthropogenic activities and have more serious consequences on the quality of water and air. In the present study relationship between land use impact on water and air quality have been reviewed.


Soil Research ◽  
2019 ◽  
Vol 57 (6) ◽  
pp. 629 ◽  
Author(s):  
C. Duwig ◽  
B. Prado ◽  
A.-J. Tinet ◽  
P. Delmas ◽  
N. Dal Ferro ◽  
...  

Volcanic soils are important resources because of their unique mineralogical and physical characteristics, and allophanic Andosols represent some of the world’s most fertile soils. However, their unique properties can be lost when cultivated. Most soils in the Central Valley, Mexico, are derived from volcanic materials. This valley encompasses one of the largest water supply systems in the world by volume, but is affected by soil degradation and deforestation. Sustainably managing volcanic soils requires understanding how land use affects their hydrodynamic properties. Gas adsorption and mercury intrusion porosimetry, water retention curves, tension infiltrometry and X-ray tomography were used to describe pore structure characteristics. Two volcanic soils (one Andosol and one derived from indurated tuff – Tepetates), three land uses (maize monoculture, maize–wheat rotation and fallow) and two horizons (Ap and A2 for maize monoculture and maize–wheat rotation) were studied. Tillage affected topsoil by increasing the sand fraction by 38% and decreasing total porosity and macroporosity by 23% and 40% respectively. Macropore size was reduced and the number of isolated macropores was higher in the tilled layer under maize, compared with untilled subsoil. The plot under maize–wheat rotation had lower allophane content, and saturated hydraulic conductivity was reduced by nearly an order of magnitude and water retention by half, compared with maize and fallow plots. Compared with Andosols, Tepetates showed differences in mineralogical composition with lower contents of amorphous compounds and in its porous network characteristics with twice the total and percolating macroporosity compared with the maize plot. Its high content of organic carbon (3.5%) seemed beneficial for its hydrodynamic properties. Sustainable agricultural management of these volcanic soils requires reducing mechanised tillage, avoiding periods when soil is bare, not applying maize–wheat rotation and applying maize–fallow rotation allowing natural vegetation growth.


2020 ◽  
Vol 63 ◽  
pp. 102436 ◽  
Author(s):  
Nor Diana Abdul Halim ◽  
Mohd Talib Latif ◽  
Ahmad Fariz Mohamed ◽  
Khairul Nizam Abdul Maulud ◽  
Shaharudin Idrus ◽  
...  

2020 ◽  
Vol 14 (2) ◽  
pp. 81-88
Author(s):  
Eva Mia Siska Yamamoto ◽  
Takahiro Sayama ◽  
Kodai Yamamoto ◽  
Apip

2018 ◽  
Vol 66 (2) ◽  
pp. 181-188 ◽  
Author(s):  
Hana Hlaváčiková ◽  
Viliam Novák ◽  
Zdeněk Kostka ◽  
Michal Danko ◽  
Jozef Hlavčo

AbstractStony soils are composed of two fractions (rock fragments and fine soil) with different hydrophysical characteristics. Although stony soils are abundant in many catchments, their properties are still not well understood. This manuscript presents an application of the simple methodology for deriving water retention properties of stony soils, taking into account a correction for the soil stoniness. Variations in the water retention of the fine soil fraction and its impact on both the soil water storage and the bottom boundary fluxes are studied as well. The deterministic water flow model HYDRUS-1D is used in the study. The results indicate that the presence of rock fragments in a moderate-to-high stony soil can decrease the soil water storage by 23% or more and affect the soil water dynamics. Simulated bottom fluxes increased or decreased faster, and their maxima during the wet period were larger in the stony soil compared to the non-stony one.


Forests ◽  
2018 ◽  
Vol 10 (1) ◽  
pp. 17 ◽  
Author(s):  
Franklin Marín ◽  
Carlos Dahik ◽  
Giovanny Mosquera ◽  
Jan Feyen ◽  
Pedro Cisneros ◽  
...  

Andean ecosystems provide important ecosystem services including streamflow regulation and carbon sequestration, services that are controlled by the water retention properties of the soils. Even though these soils have been historically altered by pine afforestation and grazing, little research has been dedicated to the assessment of such impacts at local or regional scales. To partially fill this knowledge gap, we present an evaluation of the impacts of pine plantations and grazing on the soil hydro-physical properties and soil organic matter (SOM) of high montane forests and páramo in southern Ecuador, at elevations varying between 2705 and 3766 m a.s.l. In total, seven study sites were selected and each one was parceled into undisturbed and altered plots with pine plantation and grazing. Soil properties were characterized at two depths, 0–10 and 10–25 cm, and differences in soil parameters between undisturbed and disturbed plots were analyzed versus factors such as ecosystem type, sampling depth, soil type, elevation, and past/present land management. The main soil properties affected by land use change are the saturated hydraulic conductivity (Ksat), the water retention capacity (pF 0 to 2.52), and SOM. The impacts of pine afforestation are dependent on sampling depth, ecosystem type, plantation characteristics, and previous land use, while the impacts of grazing are primarily dependent on sampling depth and land use management (grazing intensity and tilling activities). The site-specific nature of the found relations suggests that extension of findings in response to changes in land use in montane Andean ecosystems is risky; therefore, future evaluations of the impact of land use change on soil parameters should take into consideration that responses are or can be site specific.


2001 ◽  
Vol 7 (6) ◽  
pp. 631-639 ◽  
Author(s):  
J. M. Paruelo ◽  
I. C. Burke ◽  
W. K. Lauenroth

Sign in / Sign up

Export Citation Format

Share Document