Role of insulin and IGF-I on the regulation of glucose metabolism in European sea bass (Dicentrarchus labrax) fed with different dietary carbohydrate levels

Author(s):  
P. Enes ◽  
J. Sanchez-Gurmaches ◽  
I. Navarro ◽  
J. Gutiérrez ◽  
A. Oliva-Teles
2015 ◽  
Vol 114 (10) ◽  
pp. 1584-1593 ◽  
Author(s):  
Carolina Castro ◽  
Amalia Peréz-Jiménez ◽  
Filipe Coutinho ◽  
Patricia Díaz-Rosales ◽  
Cláudia Alexandra dos Reis Serra ◽  
...  

AbstractThis study aimed to evaluate the effects of dietary lipid source and carbohydrate content on the oxidative status of European sea bass (Dicentrarchus labrax) juveniles. For that purpose, four diets were formulated with fish oil (FO) and vegetable oils (VO) as the lipid source and with 20 or 0 % gelatinised starch as the carbohydrate source, in a 2×2 factorial design. Liver and intestine antioxidant enzyme activities (catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPX), glutathione reductase (GR), glucose-6-phosphate dehydrogenase (G6PD)), hepatic and intestinal lipid peroxidation (LPO), as well as hepatic oxidative stress index (OSI), were measured in fish fed the experimental diets for 73 d (n9 fish/diet). Carbohydrate-rich diets promoted a decrease in hepatic LPO and OSI, whereas the lipid source induced no changes. Inversely, dietary lipid source, but not dietary carbohydrate concentration, affected LPO in the intestine. Lower intestinal LPO was observed in VO groups. Enzymes responsive to dietary treatments were GR, G6PD and CAT in the liver and GR and GPX in the intestine. Dietary carbohydrate induced GR and G6PD activities and depressed CAT activity in the liver. GPX and GR activities were increased in the intestine of fish fed VO diets. Overall, effects of diet composition on oxidative status were tissue-related: the liver and intestine were strongly responsive to dietary carbohydrates and lipid sources, respectively. Furthermore, different metabolic routes were more active to deal with the oxidative stress in the two organs studied.


2016 ◽  
Vol 94 (6) ◽  
Author(s):  
José A. Paullada-Salmerón ◽  
Mairi Cowan ◽  
María Aliaga-Guerrero ◽  
Francesca Morano ◽  
Silvia Zanuy ◽  
...  

Abstract Gonadotropin-inhibitory hormone (GnIH) inhibits gonadotropin synthesis and release from the pituitary of birds and mammals. However, the physiological role of orthologous GnIH peptides on the reproductive axis of fish is still uncertain, and their actions on the main neuroendocrine systems controlling reproduction (i.e., GnRHs, kisspeptins) have received little attention. In a recent study performed in the European sea bass, we cloned a cDNA encoding a precursor polypeptide that contained C-terminal MPMRFamide (sbGnIH-1) and MPQRFamide (sbGnIH-2) peptide sequences, developed a specific antiserum against sbGnIH-2, and characterized its central and pituitary GnIH projections in this species. In this study, we analyzed the effects of intracerebroventricular injection of sbGnIH-1 and sbGnIH-2 on brain and pituitary expression of reproductive hormone genes (gnrh1, gnrh2, gnrh3, kiss1, kiss2, gnih, lhbeta, fshbeta), and their receptors (gnrhr II-1a, gnrhr II-2b, kiss1r, kiss2r, and gnihr) as well as on plasma Fsh and Lh levels. In addition, we determined the effects of GnIH on pituitary somatotropin (Gh) expression. The results obtained revealed the inhibitory role of sbGnIH-2 on brain gnrh2, kiss1, kiss2, kiss1r, gnih, and gnihr transcripts and on pituitary fshbeta, lhbeta, gh, and gnrhr-II-1a expression, whereas sbGnIH-1 only down-regulated brain gnrh1 expression. However, at different doses, central administration of both sbGnIH-1 and sbGnIH-2 decreased Lh plasma levels. Our work represents the first study reporting the effects of centrally administered GnIH in fish and provides evidence of the differential actions of sbGnIH-1 and sbGnIH-2 on the reproductive axis of sea bass, the main inhibitory role being exerted by the sbGnIH-2 peptide.


1999 ◽  
Vol 277 (6) ◽  
pp. R1627-R1634 ◽  
Author(s):  
José Miguel Cerdá-Reverter ◽  
Lisa Ann Sorbera ◽  
Manuel Carrillo ◽  
Silvia Zanuy

The purpose of this work was to examine the role of energetic status in neuropeptide Y (NPY)-induced luteinizing hormone (LH) secretion and glucose metabolism in fish. Fasted juvenile sea bass ( Dicentrarchus labrax) were injected intraperitoneally with pig (p) NPY or pNPY + glucose, whereas fed animals were injected with pNPY alone and plasma glucose, insulin, and LH levels were examined. pNPY alone or in combination with glucose was found to induce a dose-dependent increase in LH secretion in fasted animals. Similar LH responses to pNPY were observed in vitro in dispersed pituitary cells isolated from fed and fasted animals incubated in L-15 and restricted media. Injection of pNPY + glucose in fasted animals resulted in depletion of glucose. Insulin plasma levels decreased in fasted animals coinjected with pNPY + glucose but remained stable when NPY was administrated alone to fed and fasted animals. Results suggest that 1) NPY-induced LH secretion in fish is dependent on energetic status and 2) NPY is capable of modifying glucose metabolism.


2020 ◽  
Vol 287 (1923) ◽  
pp. 20192922 ◽  
Author(s):  
M. Cerqueira ◽  
S. Millot ◽  
A. Felix ◽  
T. Silva ◽  
G. A. Oliveira ◽  
...  

The role of cognitive factors in triggering the stress response is well established in humans and mammals (aka cognitive appraisal theory) but very seldom studied in other vertebrate taxa. Predictability is a key factor of the cognitive evaluation of stimuli. In this study, we tested the effects of stressor predictability on behavioral, physiological and neuromolecular responses in the European sea bass ( Dicentrarchus labrax ). Groups of four fish were exposed to a predictable (signalled) or unpredictable (unsignalled) stressor. Stressor predictability elicited a lower behavioural response and reduced cortisol levels. Using the expression of immediate early genes ( c-fos , egr-1 , bdnf and npas4 ) as markers of neuronal activity, we monitored the activity of three sea bass brain regions known to be implicated in stressor appraisal: the dorsomedian telencephalon, Dm (putative homologue of the pallial amygdala); and the dorsal (Dld) and ventral (Dlv) subareas of the dorsolateral telencephalon (putative homologue of the hippocampus). The activity of both the Dm and Dlv significantly responded to stressor predictability, suggesting an evolutionarily conserved role of these two brain regions in information processing related to stressor appraisal. These results indicate that stressor predictability plays a key role in the activation of the stress response in a teleost fish, hence highlighting the role of cognitive processes in fish stress.


Sign in / Sign up

Export Citation Format

Share Document