Urine organic acid as the first clue towards aromatic L-amino acid decarboxylase (AADC) deficiency in a high prevalence area

Author(s):  
Tsz-Ki Ling ◽  
Ka-Chung Wong ◽  
Candace Yim Chan ◽  
Nike Kwai-Cheung Lau ◽  
Chun-yiu Law ◽  
...  
Pathology ◽  
2020 ◽  
Vol 52 ◽  
pp. S107
Author(s):  
Chun Yiu Law ◽  
Tsz Ki Ling ◽  
Ka Chung Wong ◽  
Ching Wan Lam

2012 ◽  
Vol 413 (1-2) ◽  
pp. 126-130 ◽  
Author(s):  
Han-Chih Hencher Lee ◽  
Chi-Kong Lai ◽  
Kin-Cheong Eric Yau ◽  
Tak-Shing Siu ◽  
Chloe Miu Mak ◽  
...  

2021 ◽  
Vol 47 (1) ◽  
Author(s):  
Carlo Fusco ◽  
◽  
Vincenzo Leuzzi ◽  
Pasquale Striano ◽  
Roberta Battini ◽  
...  

Abstract Background Aromatic L-amino acid decarboxylase (AADC) deficiency is a rare and underdiagnosed neurometabolic disorder resulting in a complex neurological and non-neurological phenotype, posing diagnostic challenges resulting in diagnostic delay. Due to the low number of patients, gathering high-quality scientific evidence on diagnosis and treatment is difficult. Additionally, based on the estimated prevalence, the number of undiagnosed patients is likely to be high. Methods Italian experts in AADC deficiency formed a steering committee to engage clinicians in a modified Delphi consensus to promote discussion, and support research, dissemination and awareness on this disorder. Five experts in the field elaborated six main topics, each subdivided into 4 statements and invited 13 clinicians to give their anonymous feedback. Results 100% of the statements were answered and a consensus was reached at the first round. This enabled the steering committee to acknowledge high rates of agreement between experts on clinical presentation, phenotypes, diagnostic work-up and treatment strategies. A research gap was identified in the lack of standardized cognitive and motor outcome data. The need for setting up an Italian working group and a patients’ association, together with the dissemination of knowledge inside and outside scientific societies in multiple medical disciplines were recognized as critical lines of intervention. Conclusions The panel expressed consensus with high rates of agreement on a series of statements paving the way to disseminate clear messages concerning disease presentation, diagnosis and treatment and strategic interventions to disseminate knowledge at different levels. Future lines of research were also identified.


1978 ◽  
Vol 235 (1) ◽  
pp. R41-R47
Author(s):  
M. T. Lin ◽  
I. H. Pang ◽  
S. I. Chern ◽  
W. Y. Chia

Elevating serotonin (5-HT) contents in brain with 5-hydroxytryptophan (5-HTP) reduced rectal temperature (Tre) in rabbits after peripheral decarboxylase inhibition with the aromatic-L-amino-acid decarboxylase inhibitor R04-4602 at two ambient temperatures (Ta), 2 and 22 degrees C. The hypothermia was brought about by both an increase in respiratory evaporative heat loss (Eres) and a decrease in metabolic rate (MR) in the cold. At a Ta of 22 degrees C, the hypothermia was achieved solely due to an increase in heat loss. Depleting brain contents of 5-HT with intraventricular, 5,7-dihydroxytryptamine (5,7-DHT) produced an increased Eres and ear blood flow even at Ta of 2 degrees C. Also, MR increased at all but the Ta of 32 degrees C. However, depleting the central and peripheral contents of 5-HT with p-chlorophenylalanine (pCPA) produced lower MR accompanied by lower Eres in the cold compared to the untreated control. Both groups of pCPA-treated and 5,7-DHT-treated animals maintained their Tre within normal limits. The data suggest that changes in 5-HT content in brain affects the MR of rabbits in the cold. Elevating brain content of 5-HT tends to depress the MR response to cold, while depleting brain content of 5-HT tends to enhance the MR response to cold.


Sign in / Sign up

Export Citation Format

Share Document