scholarly journals The ratio of cardiac troponin T to troponin I may indicate non-necrotic troponin release among COVID-19 patients

Author(s):  
Ola Hammarsten ◽  
Pontus Ljungqvist ◽  
Björn Redfors ◽  
Mathias Wernbom ◽  
Hannes Widing ◽  
...  
Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 1461-P
Author(s):  
PAUL WELSH ◽  
DAVID PREISS ◽  
ARCHIE CAMPBELL ◽  
DAVID J. PORTEOUS ◽  
NICHOLAS L. MILLS ◽  
...  

Author(s):  
RA Jones ◽  
J Barratt ◽  
EA Brettell ◽  
P Cockwell ◽  
RN Dalton ◽  
...  

Background Patients with chronic kidney disease often have increased plasma cardiac troponin concentration in the absence of myocardial infarction. Incidence of myocardial infarction is high in this population, and diagnosis, particularly of non ST-segment elevation myocardial infarction (NSTEMI), is challenging. Knowledge of biological variation aids understanding of serial cardiac troponin measurements and could improve interpretation in clinical practice. The National Academy of Clinical Biochemistry (NACB) recommended the use of a 20% reference change value in patients with kidney failure. The aim of this study was to calculate the biological variation of cardiac troponin I and cardiac troponin T in patients with moderate chronic kidney disease (glomerular filtration rate [GFR] 30–59 mL/min/1.73 m2). Methods and results Plasma samples were obtained from 20 patients (median GFR 43.0 mL/min/1.73 m2) once a week for four consecutive weeks. Cardiac troponin I (Abbott ARCHITECT® i2000SR, median 4.3 ng/L, upper 99th percentile of reference population 26.2 ng/L) and cardiac troponin T (Roche Cobas® e601, median 11.8 ng/L, upper 99th percentile of reference population 14 ng/L) were measured in duplicate using high-sensitivity assays. After outlier removal and log transformation, 18 patients’ data were subject to ANOVA, and within-subject (CVI), between-subject (CVG) and analytical (CVA) variation calculated. Variation for cardiac troponin I was 15.0%, 105.6%, 8.3%, respectively, and for cardiac troponin T 7.4%, 78.4%, 3.1%, respectively. Reference change values for increasing and decreasing troponin concentrations were +60%/–38% for cardiac troponin I and +25%/–20% for cardiac troponin T. Conclusions The observed reference change value for cardiac troponin T is broadly compatible with the NACB recommendation, but for cardiac troponin I, larger changes are required to define significant change. The incorporation of separate RCVs for cardiac troponin I and cardiac troponin T, and separate RCVs for rising and falling concentrations of cardiac troponin, should be considered when developing guidance for interpretation of sequential cardiac troponin measurements.


2020 ◽  
Vol 78 ◽  
pp. 42
Author(s):  
Sjur H. Tveit ◽  
Peder L. Myhre ◽  
Helge Røsjø ◽  
Torbjørn Omland

2016 ◽  
Vol 49 (6) ◽  
pp. 421-432 ◽  
Author(s):  
Seoung Mann Sou ◽  
Christian Puelacher ◽  
Raphael Twerenbold ◽  
Max Wagener ◽  
Ursina Honegger ◽  
...  

2007 ◽  
Vol 40 (5-6) ◽  
pp. 423-426 ◽  
Author(s):  
Salim Fredericks ◽  
Hans Degens ◽  
Godfrina McKoy ◽  
Katie Bainbridge ◽  
Paul O. Collinson ◽  
...  

Author(s):  
Kamila Solecki ◽  
Anne Marie Dupuy ◽  
Nils Kuster ◽  
Florence Leclercq ◽  
Richard Gervasoni ◽  
...  

AbstractCardiac biomarkers are the cornerstone of the biological definition of acute myocardial infarction (AMI). The key role of troponins in diagnosis of AMI is well established. Moreover, kinetics of troponin I (cTnI) and creatine kinase (CK) after AMI are correlated to the prognosis. New technical assessment like high-sensitivity cardiac troponin T (hs-cTnT) raises concerns because of its unclear kinetic following the peak. This study aims to compare kinetics of cTnI and hs-cTnT to CK in patients with large AMI successfully treated by percutaneous coronary intervention (PCI).We prospectively studied 62 patients with anterior AMI successfully reperfused with primary angioplasty. We evaluated two consecutive groups: the first one regularly assessed by both CK and cTnI methods and the second group by CK and hs-cTnT. Modeling of kinetics was realized using mixed effects with cubic splines.Kinetics of markers showed a peak at 7.9 h for CK, at 10.9 h (6.9–12.75) for cTnI and at 12 h for hs-cTnT. This peak was followed by a nearly log linear decrease for cTnI and CK by contrast to hs-cTnT which appeared with a biphasic shape curve marked by a second peak at 82 h. There was no significant difference between the decrease of cTnI and CK (p=0.63). CK fell by 79.5% (76.1–99.9) vs. cTnI by 86.8% (76.6–92.7). In the hs-cTnT group there was a significant difference in the decrease by 26.5% (9–42.9) when compared with CK that fell by 79.5% (64.3–90.7).Kinetic of hs-cTnT and not cTnI differs from CK. The role of hs-cTnT in prognosis has to be investigated.


Sign in / Sign up

Export Citation Format

Share Document